Skip to main content

An Iterative Approach for Phylogenetic Analysis of Tumor Progression Using FISH Copy Number

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Abstract

Copy number variants are an underlying factor in human evolution and in many diseases, especially in cancer. Tumors generally contain cells with a varying number of gene copies, and the variance in the number of gene copies follows a pattern formed by an evolutionary process. The Fluorescence in situ hybridization (FISH) provides researchers a reliable technique to measure the copy numbers of preselected genes in a group of cells. Recently, Chowdhury et al. successfully modeled the progression of tumor progression using FISH copy number to the Rectilinear Steiner Minimum Tree (RSMT) problem, and proposed both exact and heuristic algorithms to reconstruct phylogenetic trees modeling the development of cancer cell patterns [1]. We proposed new heuristics to attack the RSMT problem, which is inspired by iterative approaches to approximate solutions to the Steiner tree in the “small phylogeny” problem [2,3]. Experimental results from both simulated and real tumor data show that our approach outperforms the previous heuristic algorithm in approximating better solutions for the RSMT problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29(13), 189–198 (2013)

    Article  Google Scholar 

  2. Sankoff, D., Cedergren, R.J., Lapalme, G.: Frequency of insertion-deletion, transversion, and transition in the evolution of 5s ribosomal rna. Journal of Molecular Evolution 7(2), 133–149 (1976)

    Article  Google Scholar 

  3. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. Genome Informatics 8, 25–34 (1997)

    Google Scholar 

  4. Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., Stratton, M.R.: A census of human cancer genes. Nature Reviews Cancer 4(3), 177–183 (2004)

    Article  Google Scholar 

  5. Yates, L.R., Campbell, P.J.: Evolution of the cancer genome. Nature Reviews Genetics 13(11), 795–806 (2012)

    Article  Google Scholar 

  6. Baudis, M.: Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer 7(1), 226 (2007)

    Article  Google Scholar 

  7. Pleasance, E.D., Cheetham, R.K., Stephens, P.J., McBride, D.J., Humphray, S.J., Greenman, C.D., Varela, I., Lin, M.-L., Ordóñez, G.R., Bignell, G.R., et al.: A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278), 191–196 (2009)

    Article  Google Scholar 

  8. Martins, F.C., De, S., Almendro, V., Gönen, M., Park, S.Y., Blum, J.L., Herlihy, W., Ethington, G., Schnitt, S.J., Tung, N., et al.: Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discovery 2(6), 503–511 (2012)

    Article  Google Scholar 

  9. Navin, N., Krasnitz, A., Rodgers, L., Cook, K., Meth, J., Kendall, J., Riggs, M., Eberling, Y., Troge, J., Grubor, V., et al.: Inferring tumor progression from genomic heterogeneity. Genome Research 20(1), 68–80 (2010)

    Article  Google Scholar 

  10. Cheng, Y.-K., Beroukhim, R., Levine, R.L., Mellinghoff, I.K., Holland, E.C., Michor, F.: A mathematical methodology for determining the temporal order of pathway alterations arising during gliomagenesis. PLOS Computational Biology 8(1), 1002337

    Google Scholar 

  11. Caldecott, K.W.: Single-strand break repair and genetic disease. Nature Reviews Genetics 9(8), 619–631 (2008)

    Google Scholar 

  12. Hastings, P., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in gene copy number. Nature Reviews Genetics 10(8), 551–564 (2009)

    Article  Google Scholar 

  13. Cleaver, J.E., Lam, E.T., Revet, I.: Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nature Reviews Genetics 10(11), 756–768 (2009)

    Article  Google Scholar 

  14. Langer-Safer, P.R., Levine, M., Ward, D.C.: Immunological method for mapping genes on drosophila polytene chromosomes. Proceedings of the National Academy of Sciences 79(14), 4381–4385 (1982)

    Article  Google Scholar 

  15. Attolini, C.S.-O., Michor, F.: Evolutionary theory of cancer. Annals of the New York Academy of Sciences 1168(1), 23–51 (2009)

    Article  Google Scholar 

  16. Greenman, C.D., Pleasance, E.D., Newman, S., Yang, F., Fu, B., Nik-Zainal, S., Jones, D., Lau, K.W., Carter, N., Edwards, P.A., et al.: Estimation of rearrangement phylogeny for cancer genomes. Genome Research 22(2), 346–361 (2012)

    Article  Google Scholar 

  17. Shlush, L.I., Chapal-Ilani, N., Adar, R., Pery, N., Maruvka, Y., Spiro, A., Shouval, R., Rowe, J.M., Tzukerman, M., Bercovich, D., et al.: Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate heterogeneity and microsatellite instability. Blood 120(3), 603–612 (2012)

    Article  Google Scholar 

  18. Pennington, G., Smith, C.A., Shackney, S., Schwartz, R.: Reconstructing tumor phylogenies from heterogeneous single-cell data. Journal of Bioinformatics and Computational Biology 5(02a), 407–427 (2007)

    Google Scholar 

  19. Fertin, G.: Combinatorics of Genome Rearrangements, pp. 133–149 (2009)

    Google Scholar 

  20. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  21. Chowdhury, S.A., Shackney, S.E., Heselmeyer-Haddad, K., Ried, T., Schäffer, A.A., Schwartz, R.: Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics. PLOS Computational Biology 10(7), 1003740 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, J., Lin, Y., Hoskins, W., Tang, J. (2015). An Iterative Approach for Phylogenetic Analysis of Tumor Progression Using FISH Copy Number. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics