Skip to main content

Interleaving Global and Local Search for Protein Motion Computation

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

We propose a novel robotics-inspired algorithm to compute physically-realistic motions connecting thermodynamically-stable and semi-stable structural states in protein molecules. Protein motion computation is a challenging problem due to the high-dimensionality of the search space involved and ruggedness of the potential energy surface underlying the space. To handle the multiple local minima issue, we propose a novel algorithm that is not based on the traditional Molecular Dynamics or Monte Carlo frameworks but instead adapts ideas from robot motion planning. In particular, the algorithm balances computational resources between a global search aimed at obtaining a global view of the network of protein conformations and their connectivity and a detailed local search focused on realizing such connections with physically-realistic models. We present here promising results on a variety of proteins and demonstrate the general utility of the algorithm and its capability to improve the state of the art without employing system-specific insight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jenzler-Wildman, K., Kern, D.: Dynamic personalities of proteins. Nature 450, 964–972 (2007)

    Article  Google Scholar 

  2. Wong, C.F., McCammon, J.A.: Protein simulation and drug design. Adv. Protein Chem. 66, 87–121 (2003)

    Article  Google Scholar 

  3. Merkx, M., Golynskiy, M.V., Lindenburg, L.H., Vinkenborg, J.L.: Rational design of FRET sensor proteins based on mutually exclusive domain interactions. Biochem. Soc. Trans. 41, 128–134 (2013)

    Article  Google Scholar 

  4. Amaro, R.E., Bansai, M.: Editorial overview: Theory and simulation: Tools for solving the insolvable. Curr. Opinion Struct. Biol. 25, 4–5 (2014)

    Article  Google Scholar 

  5. Singh, A.P., Latombe, J.C., Brutlag, D.L.: A motion planning approach to flexible ligand binding. In: Schneider, R., Bork, P., Brutlag, D.L., Glasgow, J.I., Mewes, H.W., Zimmer, R. (eds.) Proc. Int. Conf. Intell. Sys. Mol. Biol (ISMB), vol. 7, pp. 252–261. AAAI, Heidelberg (1999)

    Google Scholar 

  6. Amato, N.M., Dill, K.A., Song, G.: Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. J. Comp. Biol. 10, 239–255 (2002)

    Article  Google Scholar 

  7. Thomas, S., Song, G., Amato, N.: Protein folding by motion planning. Physical Biology S148–S155 (2005)

    Google Scholar 

  8. Thomas, S., Tang, X., Tapia, L., Amato, N.M.: Simulating protein motions with rigidity analysis. J. Comput. Biol. 14, 839–855 (2007)

    Article  Google Scholar 

  9. Tapia, L., Tang, X., Thomas, S., Amato, N.: Kinetics analysis methods for approximate folding landscapes. Bioinformatics 23, i539–i548 (2007)

    Google Scholar 

  10. Tapia, L., Thomas, S., Amato, N.: A motion planning approach to studying molecular motions. Communications in Information Systems 10, 53–68 (2010)

    Article  MATH  Google Scholar 

  11. Haspel, N., Moll, M., Baker, M.L., Chiu, W., Kavraki, L.E.: Tracing conformational changes in proteins. BMC Struct. Biol. 10, S1 (2010)

    Google Scholar 

  12. Luo, D., Haspel, N.: Multi-resolution rigidity-based sampling of protein conformational paths. In: Proc. of ACM-BCB (ACM International Conference on Bioinformatics and Computational Biology), CSBW (Computational Structural Bioinformatics Workshop), pp. 787–793 (2013)

    Google Scholar 

  13. Cortés, J., Simeon, T., de Angulo, R., Guieysse, D., Remaud-Simeon, M., Tran, V.: A path planning approach for computing large-amplitude motions of flexible molecules. Bioinformatics 21, 116–125 (2005)

    Article  Google Scholar 

  14. Jaillet, L., Corcho, F.J., Perez, J.J., Cortés, J.: Randomized tree construction algorithm to explore energy landscapes. J. Comput. Chem. 32, 3464–3474 (2011)

    Article  Google Scholar 

  15. Al-Bluwi, I., Vaisset, M., Siméon, T., Cortés, J.: Modeling protein conformational transitions by a combination of coarse-grained normal mode analysis and robotics-inspired methods. BMC Structural Biology 13, S8 (2013)

    Google Scholar 

  16. Molloy, K., Shehu, A.: Elucidating the ensemble of functionally-relevant transitions in protein systems with a robotics-inspired method. BMC Struct. Biol. 13, S8 (2013)

    Google Scholar 

  17. Nielsen, C., Kavraki, L.: A two level fuzzy prm for manipulation planning. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2000, vol. 3, pp. 1716–1721 (2000)

    Google Scholar 

  18. McLachlan, A.D.: A mathematical procedure for superimposing atomic coordinates of proteins. Acta Crystallogr. A. 26, 656–657 (1972)

    Article  Google Scholar 

  19. Yen, J.Y.: Finding the k shortest loop less paths in a network. Management Science 17, 712–716 (1971)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Molloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Molloy, K., Shehu, A. (2015). Interleaving Global and Local Search for Protein Motion Computation. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics