Skip to main content

Domain Adaptation with Logistic Regression for the Task of Splice Site Prediction

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

Supervised classifiers are highly dependent on abundant labeled training data. Alternatives for addressing the lack of labeled data include: labeling data (but this is costly and time consuming); training classifiers with abundant data from another domain (however, the classification accuracy usually decreases as the distance between domains increases); or complementing the limited labeled data with abundant unlabeled data from the same domain and learning semi-supervised classifiers (but the unlabeled data can mislead the classifier). A better alternative is to use both the abundant labeled data from a source domain and the limited labeled data from the target domain to train classifiers in a domain adaptation setting. We propose such a classifier, based on logistic regression, and evaluate it for the task of splice site prediction – a difficult and essential step in gene prediction. Our classifier achieved high accuracy, with highest areas under the precision-recall curve between 50.83% and 82.61%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arita, M., Tsuda, K., Asai, K.: Modeling splicing sites with pairwise correlations. Bioinformatics 18(suppl 2), S27–S34 (2002)

    Google Scholar 

  2. Baten, A.K.M.A., Halgamuge, S.K., Chang, B., Wickramarachchi, N.: Biological Sequence Data Preprocessing for Classification: A Case Study in Splice Site Identification. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007, Part II. LNCS, vol. 4492, pp. 1221–1230. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Baten, A.K.M.A., Chang, B.C.H., Halgamuge, S.K., Li, J.: Splice site identification using probabilistic parameters and svm classification. BMC Bioinformatics 7(suppl 5), S15 (2006)

    Google Scholar 

  4. Bernal, A., Crammer, K., Hatzigeorgiou, A., Pereira, F.: Global Discriminative Learning for Higher-Accuracy Computational Gene Prediction. PLoS Comput. Biol. 3(3), e54 (2007)

    Google Scholar 

  5. Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Furey Jr., T.S., Ares, M., Haussler, D.: Knowledge-based Analysis of Microarray Gene Expression Data Using Support Vector Machines. PNAS 97(1), 262–267 (2000)

    Article  Google Scholar 

  6. Cai, D., Delcher, A., Kao, B., Kasif, S.: Modeling splice sites with Bayes networks. Bioinformatics 16(2), 152–158 (2000)

    Article  Google Scholar 

  7. Catal, C., Diri, B.: Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction. Expert Systems 26(5), 458–471 (2009); Wiley Online Library

    Google Scholar 

  8. Chelba, C., Acero, A.: Adaptation of maximum entropy capitalizer: Little data can help a lot. Computer Speech & Language 20(4), 382–399 (2006)

    Article  Google Scholar 

  9. Dai, W., Xue, G.R., Yang, Q., Yu, Y.: Transferring Naïve Bayes Classifiers for Text Classification. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (2007)

    Google Scholar 

  10. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the Twenty Third International Conference on Machine Learning, pp. 233–240. ACM (2006)

    Google Scholar 

  11. Gross, S.S., Do, C.B., Sirota, M., Batzoglou, S.: Contrast: a discriminative, phylogeny-free approach to multiple informant de novo gene prediction. Genome Biology 8(12), R269 (2007)

    Google Scholar 

  12. Giannoulis, G., Krithara, A., Karatsalos, C., Paliouras, G.: Splice site recognition using transfer learning. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 341–353. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  13. Herndon, N., Caragea, D.: Empirical Study of Domain Adaptation with Naïve Bayes on the Task of Splice Site Prediction. In: Proceedings of the 5th International Conference on Bioinformatics Models, Methods and Algorithms, pp. 57–67 (2014)

    Google Scholar 

  14. Herndon, N., Caragea, D.: Predicting Protein Localization Using a Domain Adaptation Approach. In: FernÁndez Chimeno, M., Fernandes, P.L., Alvarez, S., Stacey, D., Solé-Casals, J., Fred, A., Gamboa, H. (eds.) BIOSTEC 2013. CCIS, vol. 452, pp. 191–206. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Hubbard, T.J., Park, J.: Fold recognition and ab initio structure predictions using hidden markov models and β-strand pair potentials. Proteins: Structure, Function, and Bioinformatics 23(3), 398–402 (1995)

    Article  Google Scholar 

  16. Korf, I., Flicek, P., Duan, D., Brent, M.R.: Integrating genomic homology into gene structure prediction. Bioinformatics 17(suppl. 1), S140–S148 (2001)

    Google Scholar 

  17. Le Cessie, S., Van Houwelingen, J.C.: Ridge estimators in logistic regression. Applied Statistics, 191–201 (1992)

    Google Scholar 

  18. Li, J.L., Wang, L.F., Wang, H.Y., Bai, L.Y., Yuan, Z.M.: High-accuracy splice site prediction based on sequence component and position features. Genet. Mol. Res. 11(3), 3432–3451 (2012)

    Article  Google Scholar 

  19. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, S., Schölkopf, B.: An Introduction to Kernel-Based learning Algorithms. IEEE Transactions on Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

  20. Noble, W.S.: What is a support vector machine? Nat. Biotech. 24(12), 1565–1567 (2006)

    Article  MathSciNet  Google Scholar 

  21. Rätsch, G., Sonnenburg, S., Srinivasan, J., Witte, H., Müller, K.-R., Sommer, R., Schölkopf, B.: Improving the C. elegans genome annotation using machine learning. PLoS Computational Biology 3, e20 (2007)

    Google Scholar 

  22. Schweikert, G., Widmer, C., Schölkopf, B., Rätsch, G.: An Empirical Analysis of Domain Adaptation Algorithms for Genomic Sequence Analysis. In: NIPS 2008, pp. 1433–1440 (2008)

    Google Scholar 

  23. Sonnenburg, S., Schweikert, G., Philips, P., Behr, J., Rätsch, G.: Accurate Splice site Prediction Using Support Vector Machines. BMC Bioinformatics 8(suppl.10), 1–16 (2007)

    Google Scholar 

  24. Stanescu, A., Caragea, D.: Ensemble-based semi-supervised learning approaches for imbalanced splice site datasets. In: Proceedings of the 6th IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2014, pp. 432–437 (2014)

    Google Scholar 

  25. Stanescu, A., Caragea, D.: Semi-supervised self-training approaches for imbalanced splice site datasets. In: Proceedings of the 6th International Conference on Bioinformatics and Computational Biology, BICoB 2014, pp. 131–136 (2014)

    Google Scholar 

  26. Stanke, M., Waack, S.: Gene prediction with a hidden markov model and a new intron submodel. Bioinformatics 19(suppl 2), ii215–ii225 (2003)

    Google Scholar 

  27. Steijger, T., Abril, J.F., Engström, P.G., Kokocinski, F., Hubbard, T.J., Guigó, R., Harrow, J., Bertone, P., RGASP Consortium, et al.: Assessment of transcript reconstruction methods for rna-seq. Nature Methods 10(12), 1177–1184 (2013)

    Google Scholar 

  28. Tan, S., Cheng, X., Wang, Y., Xu, H.: Adapting Naïve Bayes to Domain Adaptation for Sentiment Analysis. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 337–349. Springer, Heidelberg (2009)

    Google Scholar 

  29. Zhang, Y., Chu, C.H., Chen, Y., Zha, H., Ji, X.: Splice site prediction using support vector machines with a Bayes kernel. Expert Syst. Appl. 30(1), 73–81 (2006)

    Article  Google Scholar 

  30. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9), 799–807 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nic Herndon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Herndon, N., Caragea, D. (2015). Domain Adaptation with Logistic Regression for the Task of Splice Site Prediction. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics