The Machinery: Mechanisms Behind Climatic Changes

  • Stefan Brönnimann
Part of the Advances in Global Change Research book series (AGLO, volume 55)


Brückner’s depiction of climate as a clockwork is remarkable. During the last 125 years, science has unravelled many of the hidden mechanisms. Before discussing climatic changes since 1700, it is useful to start with a tour of the “machinery” of the climate system. Basic physical concepts and mechanisms operating in the climate system will be briefly introduced—the motor, transmission, and basic mode of the operation of the machinery. Then, we will analyse how these mechanisms produce variations over time. We will look at changes in the general circulation, how they are expressed in systematic form in circulation variability modes, and how they affect local climate in the form of teleconnections. Special attention is devoted to how the machinery reacts to external forces and how feedback processes evolve in the climate system.


Pacific Decadal Oscillation Aerosol Optical Depth North Atlantic Oscillation North Atlantic Oscillation Index Polar Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nat Geosci 1:849–853CrossRefGoogle Scholar
  2. Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Niño-like response to volcanic forcing. Nature 426:274–278CrossRefGoogle Scholar
  3. Anchukaitis KJ, Buckley BM, Cook ER et al (2010) Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37:L22703CrossRefGoogle Scholar
  4. Anchukaitis KJ, Breitenmoser P, Briffa KR et al (2012) Tree rings and volcanic cooling. Nat Geosci 5:836–837CrossRefGoogle Scholar
  5. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, San DiegoGoogle Scholar
  6. Ångström A (1916) Über die Gegenstrahlung der Atmosphäre (On the counter-radiation of the atmosphere). Meteorol Z 33:529–538. (Translated and edited by Volken E, Brönnimann S, Philipona R, Meteorol Z 22:761–769, 2013)Google Scholar
  7. Ångström A (1935) Teleconnections of climatic changes in present time. Geogr Ann 17:242–258Google Scholar
  8. Arfeuille F, Luo BP, Heckendorn P et al (2013) Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmos Chem Phys 13:11221–11234CrossRefGoogle Scholar
  9. Arfeuille F, Weisenstein D, Mack H et al (2014) Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Clim Past 10:359–375CrossRefGoogle Scholar
  10. Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276CrossRefGoogle Scholar
  11. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007CrossRefGoogle Scholar
  12. Assmann R (1907) Über die Existenz eines wärmeren Luftstromes in der Höhe von 10 bis 15 km. Sitzber K Preuss Aka 24:495–504Google Scholar
  13. Auchmann R, Brönnimann S, Breda L et al (2012) Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland. Clim Past 8:325–335CrossRefGoogle Scholar
  14. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584CrossRefGoogle Scholar
  15. Ball WT, Unruh YC, Krivova NA et al (2012) Reconstruction of total solar irradiance 1974–2009. Astron Astrophys 541:A27CrossRefGoogle Scholar
  16. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wather Rev 115:1083–1126CrossRefGoogle Scholar
  17. Barrow J (1819) Physikalisch-geografische Nachrichten aus dem nördlichen Polarmeer. Ann Phys 62:157–166Google Scholar
  18. Bindoff NL, Stott PA, AchutaRao KM et al (2013) Detection and attribution of climate change: From global to regional. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/ New YorkGoogle Scholar
  19. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10CrossRefGoogle Scholar
  20. Bjerknes J (1964) Atlantic air-sea interaction. Adv Geophys 10:1–82CrossRefGoogle Scholar
  21. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18:820–829CrossRefGoogle Scholar
  22. Blanford HF (1884) On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc London 37:3–22CrossRefGoogle Scholar
  23. Bodenmann T, Brönnimann S, Hadorn GH, Krüger T, Weissert H (2011) Perceiving, explaining, and observing climatic changes: an historical case study of the “year without a summer” 1816. Meteorol Z 20:577–587CrossRefGoogle Scholar
  24. Bojkov RD (2012) International Ozone Commission: history and activities. IAMAS Publication Series p 100Google Scholar
  25. Boos WR, Kuang Z (2010) Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463:218–222CrossRefGoogle Scholar
  26. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232CrossRefGoogle Scholar
  27. Bordoni S, Schneider T (2008) Monsoons as eddy-mediated regime transitions of the tropical overturning circulation. Nat Geosci 1:515–519CrossRefGoogle Scholar
  28. Teisserenc de Bort LP (1881) Etude sur l’hiver de 1879–80 et recherches sur la position des centres d’action de l’atmosphere dans les hivers anormaux. Annales du Bureau central météorologique de France 4:17–62Google Scholar
  29. Teisserenc de Bort LP (1902) Variations de la temperature de l’air libre dans la zone comprise 8 km et 13 km d’altitude. C R Hebd Seances Acad Sci 24:987–989Google Scholar
  30. Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  31. Brasseur GP (2008) Creating knowledge from the confrontation of observations and models: the case of stratospheric ozone. Adv Glob Change Res 33:303–316Google Scholar
  32. Breitenmoser P, Beer J, Brönnimann S et al (2012) Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years. Palaeogeogr Palaeoclimatol Palaeoecol 313:127–139CrossRefGoogle Scholar
  33. Brönnimann S (2002) Ozon in der Atmosphäre. HauptGoogle Scholar
  34. Brönnimann S (2007) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003CrossRefGoogle Scholar
  35. Brönnimann S, Stickler A (2013) Aerological observations in the tropics in the early twentieth century. Meteorol Z 22:349–358CrossRefGoogle Scholar
  36. Brönnimann S, Annis JL, Vogler C, Jones PD (2007a) Reconstructing the Quasi-Biennial Oscillation back to the early 1900s. Geophys Res Lett 34:L22805CrossRefGoogle Scholar
  37. Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007b) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197CrossRefGoogle Scholar
  38. Brönnimann S, Stickler A, Griesser T et al (2009b) Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorol Z 18:379–396CrossRefGoogle Scholar
  39. Brönnimann S, Bhend J, Franke J et al (2013a) A global historical ozone data set and prominent features of stratospheric variability prior to 1979. Atmos Chem Phys 13:9623–9639CrossRefGoogle Scholar
  40. Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. E. D. Hölzel, Wien and OlmützGoogle Scholar
  41. Brugnara Y, Brönnimann S, Luterbacher J, Rozanov E (2013) Influence of the sunspot cycle on the Northern Hemisphere wintertime circulation from long upper-air data sets. Atmos Chem Phys 13:6275–6288CrossRefGoogle Scholar
  42. Burgers G, Jin FF, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706CrossRefGoogle Scholar
  43. Cai W, Cowan T (2007) Impacts of increasing anthropogenic aerosols on the atmospheric circulation trends of the Southern Hemisphere: An air-sea positive feedback. Geophys Res Lett 34:L23709CrossRefGoogle Scholar
  44. Cai W, Zheng XT, Weller E et al (2013) Projected response of the Indian Ocean Dipole to greenhouse warming. Nat Geosci 6:999–1007CrossRefGoogle Scholar
  45. Calogovic J, Albert C, Arnold F et al (2010) Sudden cosmic ray decreases: No change of global cloud cover. Geophys Res Lett 37:L03802CrossRefGoogle Scholar
  46. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  47. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:655–661CrossRefGoogle Scholar
  48. Chen GS, Liu Z, Kutzbach JE (2014) Reexamining the barrier effect of Tibetan Plateau on the South Asian summer monsoon. Clim Past 10:1269–1275CrossRefGoogle Scholar
  49. Christensen JH, Krishna Kumar K, Aldrian E et al (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge/New YorkGoogle Scholar
  50. Cicerone RJ, Stolarski RS, Walters S (1974) Stratospheric ozone destruction by man-made chlorofluoromethanes. Science 185:1165–1167CrossRefGoogle Scholar
  51. Cobb KM, Westphal N, Sayani HR et al (2013) Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339:67–70CrossRefGoogle Scholar
  52. Cohen J, Screen JA, Furtado JC et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637CrossRefGoogle Scholar
  53. Colbert AJ, Soden BJ (2012) Climatological variations in North Atlantic tropical cyclone tracks. J Clim 25:657–673CrossRefGoogle Scholar
  54. Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  55. Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation Index since AD 1400. J Clim 15:1754–1764CrossRefGoogle Scholar
  56. Croll J (1870) XII. On ocean-currents, Part I: Ocean-currents in relation to the distribution of heat over the globe. Philos Mag 39:81–106Google Scholar
  57. Croll J (1875) Climate and time in their geological relations. A theory of secular changes of the Earth’s climate. Daldy, Isbister, & Co, LondonGoogle Scholar
  58. Crowley TJ, Zielinski G, Vinther B et al (2008) Volcanism and the little ice age. PAGES News 16:22–23Google Scholar
  59. Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96:320–325CrossRefGoogle Scholar
  60. Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–220CrossRefGoogle Scholar
  61. Czaja A, Blunt N (2011) A new mechanism for ocean–atmosphere coupling in midlatitudes. Q J R Meteorol Soc 137:1095–1101CrossRefGoogle Scholar
  62. von Danckelman A (1884) Die Bewölkungsverhältnisse des südwestlichen Afrikas (Cloud-conditions in Southwest Africa). Meteorol Z 1:301–311. (Translated and edited by Volken E, Lehmann K, Brönnimann S, Meteorol Z 18:341–348, 2009)Google Scholar
  63. De Marchi L (1895a) Le cause dell’era glaciale. Premiato dal R. Istituto Lombardo, PaviaGoogle Scholar
  64. Delaygue G, Bard E (2011) An Antarctic view of Beryllium-10 and solar activity for the past millennium. Clim Dyn 36:2201–2218CrossRefGoogle Scholar
  65. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  66. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676CrossRefGoogle Scholar
  67. DeWeaver ET, Bitz CM, Tremblay LB (2008) Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophysical Monograph, vol 180. AGU, Washington, DCGoogle Scholar
  68. Dobson G (1956) Origin and distribution of the polyatomic molecules in the atmosphere. Proc R Soc A 230:187–193CrossRefGoogle Scholar
  69. Dobson GMB, Harrison DN (1926) Measurements of the amount of ozone in the Earth’s atmosphere and its relation to other geophysical conditions. Proc R Soc A 110:660–693CrossRefGoogle Scholar
  70. Dörries M (2003) Global science: the eruption of Krakatau. Endeavour 27:113–116CrossRefGoogle Scholar
  71. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G (2012) Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res 117:D17105Google Scholar
  72. Dunstone NJ, Smith DM, Booth BBB, Hermanson L, Eade R (2013) Anthropogenic aerosol forcing of Atlantic tropical storms. Nat Geosci 6:534–539CrossRefGoogle Scholar
  73. Emden R (1913) Über Strahlungsgleichgewicht und atmosphärische Strahlung. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math. Phys Klasse, pp 55–142Google Scholar
  74. Emeis S (2012) Assmann’s development of aspiration psychrometers. Meteorol Z 21:431–435CrossRefGoogle Scholar
  75. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating Central Equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J Clim 26:2329–2352Google Scholar
  76. Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080CrossRefGoogle Scholar
  77. Ermolli I, Matthes K, Dudok de Wit T et al (2013) Recent variability of the solar spectral irradiance and its impact on climate modelling. Atmos Chem Phys 13:3945–3977CrossRefGoogle Scholar
  78. Estrada F, Perron P, Martínez-López B (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat Geosci 6:1050–1055CrossRefGoogle Scholar
  79. Ewen T, Brönnimann S, Annis J (2008) An extended Pacific–North American index from upper-air historical data back to 1922. J Clim 21:1295–1308CrossRefGoogle Scholar
  80. Fabry C, Buisson H (1913) L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire. J Phys Rad, Série 5 3:196–206Google Scholar
  81. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210CrossRefGoogle Scholar
  82. Fasullo J (2004) A stratified diagnosis of the Indian monsoon–Eurasian snow cover relationship. J Clim 17:1110–1122CrossRefGoogle Scholar
  83. Fasullo JT, Trenberth KE (2008a) The annual cycle of the energy budget. Part I: Global mean and land–ocean exchanges. J Clim 21:2297–2312CrossRefGoogle Scholar
  84. Fasullo JT, Trenberth KE (2008b) The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J Clim 21:2313–2325Google Scholar
  85. Ferrel W (1856) An essay on the winds and the currents of the oceans. Nashv J Med Surg 11:287–301, 375–389Google Scholar
  86. Fischer EM, Luterbacher J, Zorita E et al (2007a) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34:L05707Google Scholar
  87. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007b) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707Google Scholar
  88. Flato G, Marotzke J, Abiodun B et al (2013) Evaluation of climate models. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge/New YorkGoogle Scholar
  89. Folland C, Parker DE, Colman A (1999) Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A (ed) Beyond El Niño: decadal and interdecadal climate variability. Springer, New York, pp 73–102CrossRefGoogle Scholar
  90. Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic Oscillation: Past, present, and future. J Clim 22:1082–1103CrossRefGoogle Scholar
  91. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801CrossRefGoogle Scholar
  92. Franke J, Frank D, Raible CC, Esper J, Brönnimann S (2013) Spectral biases in tree-ring climate proxies. Nat Clim Change 3:360–364CrossRefGoogle Scholar
  93. Franklin B (1784) Meteorological imaginations and conjectures. Manch Lit Philos Soc Mem Proc 2:373–377Google Scholar
  94. Frenger I, Gruber N, Knutti R, Munnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6:608–612CrossRefGoogle Scholar
  95. Fueglistaler S, Dessler AE, Dunkerton TJ et al (2009) Tropical tropopause layer. Rev Geophys 47:RG1004CrossRefGoogle Scholar
  96. Funke B, Baumgaertner A, Calisto M et al (2011) Composition changes after the “Halloween” solar proton event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study. Atmos Chem Phys 11:9089–9139CrossRefGoogle Scholar
  97. Gaetani M, Pohl B, Douville H, Fontaine B (2011) West African Monsoon influence on the summer Euro-Atlantic circulation. Geophys Res Lett 38:L09705CrossRefGoogle Scholar
  98. Galton F (1863) Meteorographica, or methods of mapping the weather. Macmillan, LondonGoogle Scholar
  99. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  100. Garcia-Herrera R, Diaz H, Garcia R et al (2008) A chronology of El Niño events from primary documentary sources in northern Peru. J Clim 21:1948–1962CrossRefGoogle Scholar
  101. Garfinkel CI, Hartmann DL (2008) Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res 113:D18114CrossRefGoogle Scholar
  102. Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea-level pressure. Nature 422:292–294CrossRefGoogle Scholar
  103. Giorgetta MA, Bengtsson L, Arpe K (1999) An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim Dyn 15:435–450CrossRefGoogle Scholar
  104. Glacken CJ (1967) Traces on the Rhodian shore: Nature and culture in Western thought from ancient times to the end of the eighteenth century. University of California Press, BerkeleyGoogle Scholar
  105. Goldsmith P, Tuck AF, Foot JS, Simmons EL, Newson RL (1973) Nitrogen oxides, nuclear weapon testing, concorde and stratospheric ozone. Nature 244:545–551CrossRefGoogle Scholar
  106. Goosse H, Arzel O, Luterbacher J et al (2006) The origin of the European” Medieval Warm Period”. Clim Past 2:99–113CrossRefGoogle Scholar
  107. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J Geophys Res 117:D01102Google Scholar
  108. Gray WM (1984) Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon Weather Rev 112:1649–1668Google Scholar
  109. Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys Res Lett 31:L12205CrossRefGoogle Scholar
  110. Gray LJ, Beer J, Geller M et al (2010) Solar influences on climate. Rev Geophys 48:RG4001CrossRefGoogle Scholar
  111. Grove RH (1995) Green imperialism: Colonial expansion, tropical island Edens and the origins of environmentalism, 1600–1860. Cambridge University Press, CambridgeGoogle Scholar
  112. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic Ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467CrossRefGoogle Scholar
  113. Hadley G (1735) Concerning the cause of the general trade-winds. Philos Trans 39:58–62CrossRefGoogle Scholar
  114. Hadley OL, Kirchstetter TW (2012) Black-carbon reduction of snow albedo. Nat Clim Change 2:437–440CrossRefGoogle Scholar
  115. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Philos Trans R Soc A 361:95–111CrossRefGoogle Scholar
  116. Haigh JD, Winning AR, Toumi R, Harder JW (2010) An influence of solar spectral variations on radiative forcing of climate. Nature 467:696–699CrossRefGoogle Scholar
  117. Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic Multidecadal Ocean variability. Science 334:655–659CrossRefGoogle Scholar
  118. Halley E (1686) An historical account of the trade winds, and monsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds. Philos Trans 16:153–168Google Scholar
  119. Halley E (1694) An account of the watery circulation of the sea, and of the cause of springs. Philos Trans 142:468–472Google Scholar
  120. Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116CrossRefGoogle Scholar
  121. Hamilton K (2012) Sereno Bishop, Rollo Russell, Bishop’s Ring and the discovery of the “Krakatoa Easterlies”. Atmos Ocean 50:169–175CrossRefGoogle Scholar
  122. Hann J (1890) Zur Witterungsgeschichte von Nord-Grönland, Westküste. Meteorol Z 7:109–115Google Scholar
  123. Hartmann DL (1994) Global physical climatology. International Geophysics Series. Academic, San DiegoGoogle Scholar
  124. Hartmann DL, Wallace JM, Limpasuvan V, Thompson DW, Holton JR (2000) Can ozone depletion and global warming interact to produce rapid climate change? Proc Natl Acad Sci USA 97:1412–1417CrossRefGoogle Scholar
  125. Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  126. Haywood JM, Jones A, Bellouin N, Stephenson D (2013) Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat Clim Change 3:660–665CrossRefGoogle Scholar
  127. Hegerl G, Zwiers F (2011) Use of models in detection and attribution of climate change. WIREs Clim Change 2:570–591CrossRefGoogle Scholar
  128. Hegerl GC, von Storch H, Hasselmann K et al (1996) Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J Clim 9:2281–2306CrossRefGoogle Scholar
  129. Hegerl G, Luterbacher J, Gonzalez-Rouco F et al (2011) Influence of human and natural forcing on European seasonal temperatures. Nat Geosci 4:99–103CrossRefGoogle Scholar
  130. Herschel W (1801) Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philos Trans 91:265–318CrossRefGoogle Scholar
  131. Herzog M, Graf HF (2010) Applying the three-dimensional model ATHAM to volcanic plumes: dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases. Geophys Res Lett 37:L19807CrossRefGoogle Scholar
  132. Hildebrandsson HH (1897) Quelques recherches sur les centres d’action de l’atmosphére. Kongl svenska Vetensk Akad Handl 29, 36 ppGoogle Scholar
  133. Hirschi M, Seneviratne SI, Alexandrov V et al (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4:17–21CrossRefGoogle Scholar
  134. Hoinka K (1997) The tropopause: discovery, definition, and demarcation. Meteorol Z 6:281–303Google Scholar
  135. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier/Academic, BurlingtonGoogle Scholar
  136. Holton JR, Tan HC (1980) The influence of the equatorial Quasi-Biennial Oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208Google Scholar
  137. Holton JR, Haynes PH, McIntyre ME et al (1995) Stratosphere-troposphere exchange. Rev Geophys 33:403–439CrossRefGoogle Scholar
  138. Honda M, Nakamura H, Ukita J, Kousaka I, Takeuchi K (2001) Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J Clim 14:1029–1042Google Scholar
  139. Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829CrossRefGoogle Scholar
  140. Hoyt DV (1979) The Smithsonian astrophysical observatory solar constant program. Rev Geophys 17:427–458CrossRefGoogle Scholar
  141. von Humboldt A (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cotta’scher Verlag, Stuttgart/TübingenGoogle Scholar
  142. Humphreys WJ (1913) Volcanic dust and other factors in the production of climatic changes, and their possible relation to ice ages. Bull Mount Weather Obs 6:1–34Google Scholar
  143. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation. Science 269:676–679CrossRefGoogle Scholar
  144. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North atlantic oscillation. In: JW H, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series 134, AGU, Washington, DCGoogle Scholar
  145. Ideler JL (1832) Über die angeblichen Veränderungen des Klima. Annalen der Erd-, Völker- und Staatenkunde (Berghaus’ Annalen) 5:417–471Google Scholar
  146. Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36CrossRefGoogle Scholar
  147. Ineson S, Scaife AA, Knight JR et al (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4:753–757CrossRefGoogle Scholar
  148. IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  149. Iwi AM, Hermanson L, Haines K, Sutton RT (2012) Mechanisms linking volcanic aerosols to the Atlantic Meridional Overturning Circulation. J Clim 25:3039–3051CrossRefGoogle Scholar
  150. Izumo T, Vialard J, Lengaigne M et al (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172CrossRefGoogle Scholar
  151. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64:11595CrossRefGoogle Scholar
  152. Jefferson T (1787) Notes on the State of Virginia. J Stockdale, London, 382 ppGoogle Scholar
  153. Johnston H, Whitten G, Birks J (1973) Effect of nuclear explosions on stratospheric nitric oxide and ozone. J Geophys Res 78:6107–6135CrossRefGoogle Scholar
  154. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  155. Jones PD, Briffa KR, Osborn TJ et al (2009b) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  156. Joseph R, Zeng N (2011) Seasonally modulated tropical drought induced by volcanic aerosol. J Clim 24:2045–2060CrossRefGoogle Scholar
  157. Kang S, Yang B, Qin C et al (2013) Extreme drought events in the years 1877–1878, and 1928, in the southeast Qilian Mountains and the air–sea coupling system. Quat Int 283:85–92CrossRefGoogle Scholar
  158. Karoly DJ (1989) Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  159. Kawatani Y, Hamilton K (2013) Weakened stratospheric Quasibiennial Oscillation driven by increased tropical mean upwelling. Nature 497:478–481CrossRefGoogle Scholar
  160. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142CrossRefGoogle Scholar
  161. Kirkby J, Curtius J, Almeida J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433CrossRefGoogle Scholar
  162. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708CrossRefGoogle Scholar
  163. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706CrossRefGoogle Scholar
  164. Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle. J Geophys Res 107:4749CrossRefGoogle Scholar
  165. Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38:L01706CrossRefGoogle Scholar
  166. Koster RD, Dirmeyer PA, Guo Z et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140CrossRefGoogle Scholar
  167. Krivova NA, Vieira LEA, Solanki SK (2010) Reconstruction of solar spectral irradiance since the Maunder minimum. J Geophys Res 115:A12112CrossRefGoogle Scholar
  168. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian Monsoon failure during El Niño. Science 314:115–119CrossRefGoogle Scholar
  169. Labitzke K, van Loon H (1999) The stratosphere: phenomena, history, and relevance. Springer, Berlin/New YorkCrossRefGoogle Scholar
  170. Labitzke K, Kunze M, Brönnimann S (2006) Sunspots, the QBO and the stratosphere in the North Polar Region–20 years later. Meteorol Z 15:355–363CrossRefGoogle Scholar
  171. Larkin NK, Harrison D (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705CrossRefGoogle Scholar
  172. Lavigne F, Degeai JP, Komorowski JC et al (2013) Source of the great AD 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc Natl Acad Sci USA 110:16742–16747CrossRefGoogle Scholar
  173. Lean JL, Rind DH (2009) How will Earth’s surface temperature change in future decades? Geophys Res Lett 36:L15708CrossRefGoogle Scholar
  174. Lehmann PN (2013) The threat of the desert: debates on climate change in the late 19th century. Presented at the conference climate and beyond, 24 Jan 2013, BernGoogle Scholar
  175. Li J, Xie SP, Cook ER et al (2013) El Niño modulations over the past seven centuries. Nat Clim Change 3:822–826CrossRefGoogle Scholar
  176. Linkin ME, Nigam S (2008) The North Pacific Oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997CrossRefGoogle Scholar
  177. Lockwood M (2012) Solar influence on global and regional climates. Surv Geophys 33:503–534CrossRefGoogle Scholar
  178. van Loon H, Meehl GA (2008) The response in the Pacific to the sun’s decadal peaks and contrasts to cold events in the Southern Oscillation. J Atmos Sol-Terr Phys 70:1046–1055CrossRefGoogle Scholar
  179. Lovelock JE, Margulis L (1974) Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26:2–10CrossRefGoogle Scholar
  180. Luterbacher J, Xoplaki E, Dietrich D et al (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561CrossRefGoogle Scholar
  181. MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32:L08703CrossRefGoogle Scholar
  182. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554CrossRefGoogle Scholar
  183. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259CrossRefGoogle Scholar
  184. Mann A (1790) Ueber die allmählichen Veränderungen der Temperatur und des Bodens in verschiedenen Climaten, nebst Untersuchungen über die Ursachen dieser Veränderungen. Historia et Commentationes Academiae Theodoro-Palatinat 6 Physicum Mannheimii:82–111 (reprinted in abbreviated form in J Phys (Grens’s J) 2: 231–244, 1790)Google Scholar
  185. Mann ME, Cane MA, Zebiak SE, Clement A (2005) Volcanic and solar forcing of the tropical Pacific over the past 1000 years. J Clim 18:447–456CrossRefGoogle Scholar
  186. Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009a) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883CrossRefGoogle Scholar
  187. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  188. Manzini E, Giorgetta M, Esch M, Kornblueh L, Roeckner E (2006) The influence of sea surface temperatures on the Northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J Clim 19:3863–3881CrossRefGoogle Scholar
  189. Marlon JR, Bartlein PJ, Carcaillet C et al (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702CrossRefGoogle Scholar
  190. Marshall GJ (2003) Trends in the Southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  191. Masson-Delmotte V, Schulz M, Abe-Ouchi A et al (2013) Information from paleoclimate archives. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  192. McVicar TR, Roderick ML, Donohue RJ et al (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416:182–205CrossRefGoogle Scholar
  193. Meehl GA, Arblaster JM, Matthes K, Sassi F, van Loon H (2009) Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science 325:1114–1118CrossRefGoogle Scholar
  194. Meinardus W (1898) Der Zusammenhang des Winterklimas in Mittel- und Nordwest-Europa mit dem Golfstrom. Z d Ges f Erdkunde in Berlin 23:183–200Google Scholar
  195. Meldrum C (1872) On a periodicity in the frequency of cyclones in the Indian Ocean south of the equator. Nature 6:357–358CrossRefGoogle Scholar
  196. Miller GH, Geirsdottir A, Zhong Y et al (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708CrossRefGoogle Scholar
  197. Mo KC, Paegle JN (2001) The Pacific–South American modes and their downstream effects. Int J Clim 21:1211–1229CrossRefGoogle Scholar
  198. Moffa-Sánchez P, Born A, Hall IR, Thornalley DJ, Barker S (2014) Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci 7:275–278CrossRefGoogle Scholar
  199. Müller R (2009) A brief history of stratospheric ozone research. Meteorol Z 18:3–24CrossRefGoogle Scholar
  200. Myhre G, Shindell D, Bréon F et al (2013) Anthropogenic and natural radiative forcing. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  201. Namias J (1950) The index cycle and its role in the general circulation. J Meteorol 7:130–139CrossRefGoogle Scholar
  202. Newman PA, Nash ER, Rosenfield JE (2001) What controls the temperature of the Arctic stratosphere during the spring? J Geophys Res 106:19999–20010CrossRefGoogle Scholar
  203. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479CrossRefGoogle Scholar
  204. North GR, Wu Q, Stevens MJ (2004) Detecting the 11-year solar cycle in the surface temperature field. Geophys Monogr Ser 141:251–259Google Scholar
  205. van Oldenborgh GJ, de Laat ATJ, Luterbacher J, Ingram WJ, Osborn TJ (2013) Claim of solar influence is on thin ice: are 11-year cycle solar minima associated with severe winters in Europe? Environ Res Lett 8:024014CrossRefGoogle Scholar
  206. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767CrossRefGoogle Scholar
  207. Päivärinta SM, Seppälä A, Andersson ME et al (2013) Observed effects of solar proton events and sudden stratospheric warmings on odd nitrogen and ozone in the polar middle atmosphere. J Geophys Res 118:6837–6848Google Scholar
  208. Pall P, Aina T, Stone DA et al (2011) Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 470:382–385CrossRefGoogle Scholar
  209. Petoukhov V, Semenov VA (2010) A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J Geophys Res 115:D21111CrossRefGoogle Scholar
  210. Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–184CrossRefGoogle Scholar
  211. Polvani L (2010) The stratosphere: dynamics, transport, and chemistry. Geophysical Monograph series, vol 190. AGU, Washington, DCGoogle Scholar
  212. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeochem Cycles 22:GB3018CrossRefGoogle Scholar
  213. Rajagopalan B, Molnar P (2013) Signatures of Tibetan Plateau heating on Indian summer monsoon rainfall variability. J Geophys Res 118:1170–1178Google Scholar
  214. Rasmusson EM, Wallace JM (1983) Meteorological aspects of the El Niño/southern oscillation. Science 222:1195–1202CrossRefGoogle Scholar
  215. Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125CrossRefGoogle Scholar
  216. Reed RJ, Campbell WJ, Rasmussen LA, Rogers DG (1961) Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818CrossRefGoogle Scholar
  217. Richter I, Behera SK, Masumoto Y et al (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47Google Scholar
  218. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  219. Rogers JC (1981) The North Pacific oscillation. J Climatol 1:39–57CrossRefGoogle Scholar
  220. Rogers JC, van Loon H (1979) The seasaw in winter temperature between Greenland and Northern Europe. Part II: some oceanic and atmospheric effects in middle and high latitudes. Mon Weather Rev 107:509–519CrossRefGoogle Scholar
  221. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116CrossRefGoogle Scholar
  222. Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Clim Change 61:261–293CrossRefGoogle Scholar
  223. Russell A, McGregor GR, Marshall GJ (2006) 340 years of atmospheric circulation characteristics reconstructed from an Eastern Antarctic Peninsula ice core. Geophys Res Lett 33:L08702CrossRefGoogle Scholar
  224. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonGoogle Scholar
  225. Sassi F, Kinnison D, Boville B, Garcia R, Roble R (2004) Effect of El Niño–Southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res 109:D17108CrossRefGoogle Scholar
  226. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res 98:22987–22994CrossRefGoogle Scholar
  227. Scherhag R (1948) Neue Methoden der Wetteranalyse und Wetterprognose. Springer, BerlinCrossRefGoogle Scholar
  228. Scherhag R (1958) Das “Berliner Phänomen” und das Geophysikalische Jahr. Beilage zur Berliner Wetterkarte 137Google Scholar
  229. Schneider T (2006) The general circulation of the atmosphere. Ann Rev Earth Planet Sci 34:655–688CrossRefGoogle Scholar
  230. Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001CrossRefGoogle Scholar
  231. Schurer AP, Tett SF, Hegerl GC (2014) Small influence of solar variability on climate over the past millennium. Nat Geosci 7:104–108CrossRefGoogle Scholar
  232. Seager R, Battisti DS, Yin J et al (2002) Is the Gulf stream responsible for Europe’s mild winters? Q J R Meteorol Soc 128:2563–2586CrossRefGoogle Scholar
  233. Seager R, Kushnir Y, Ting M et al (2008) Would advance knowledge of 1930s SSTs have allowed prediction of the Dust Bowl drought? J Clim 21:3261–3281CrossRefGoogle Scholar
  234. Seneviratne SI, Stöckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. Adv Glob Change Res 33:179–193Google Scholar
  235. Seneviratne SI, Lüthi D, Litschi M, Schar C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  236. Seneviratne SI, Corti T, Davin EL et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161CrossRefGoogle Scholar
  237. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Plan Change 77:85–96CrossRefGoogle Scholar
  238. Shapiro AI, Schmutz W, Rozanov E et al (2011) A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529:A67CrossRefGoogle Scholar
  239. Shindell DT, Faluvegi G (2002) An exploration of ozone changes and their radiative forcing prior to the chlorofluorocarbon era. Atmos Chem Phys 2:363–374CrossRefGoogle Scholar
  240. Shindell DT, Schmidt GA, Mann ME, Faluvegi G (2004) Dynamic winter climate response to large tropical volcanic eruptions since 1600. J Geophys Res 109:D05104Google Scholar
  241. Siedler G, Griffies SM, Gould J, Church JA (2013) Ocean circulation and climate: a 21st century perspective. International Geophysics. Academic Press, Amsterdam, 868 ppGoogle Scholar
  242. Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat Geosci 6:98–102CrossRefGoogle Scholar
  243. Sirocko F, Brunck H, Pfahl S (2012) Solar influence on winter severity in central Europe. Geophys Res Lett 39:L16704CrossRefGoogle Scholar
  244. Sitnov SA (2009) Influence of the 11-year solar cycle on the effects of the equatorial quasi-biennial oscillation, manifesting in the extratropical Northern atmosphere. Clim Dyn 32:1–17CrossRefGoogle Scholar
  245. Solomon S (1999) Stratospheric ozone depletion: A review of concepts and history. Rev Geophys 37:275–316CrossRefGoogle Scholar
  246. Solomon S, Garcia RR, Rowland FS, Wuebbles DJ (1986) On the depletion of Antarctic ozone. Nature 321:755–758CrossRefGoogle Scholar
  247. Staehelin J, Thudium J, Buehler R, Volz-Thomas A, Graber W (1994) Trend in surface ozone concentrations at Arosa (Switzerland). Atmos Environ 28:75–87CrossRefGoogle Scholar
  248. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704CrossRefGoogle Scholar
  249. Steinhilber F, Abreu JA, Beer J et al (2012) 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci USA 109:5967–5971CrossRefGoogle Scholar
  250. Stenchikov G, Delworth TL, Ramaswamy V et al (2009) Volcanic signals in oceans. J Geophys Res 114:D16104CrossRefGoogle Scholar
  251. Stephens GL, Li J, Wild M et al (2012) An update on earth’s energy balance in light of the latest global observations. Nat Geosci 5:691–696CrossRefGoogle Scholar
  252. Stephenson D, Wanner H, Brönnimann S, Luterbacher J (2003) The history of scientific research on the North Atlantic oscillation. In: Hurrell J, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: Climatic significance and environmental impact, Geophysical Monograph Series 134. AGU, Washington, DC, pp 37–50CrossRefGoogle Scholar
  253. Stephenson DB, Hannachi A, O’Neill A (2004) On the existence of multiple climate regimes. Q J R Meteorol Soc 130:583–605CrossRefGoogle Scholar
  254. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613CrossRefGoogle Scholar
  255. Stothers RB (2000) Climatic and demographic consequences of the massive volcanic eruption of 1258. Clim Change 45:361–374CrossRefGoogle Scholar
  256. Stothers RB (2001) Major optical depth perturbations to the stratosphere from volcanic eruptions: Stellar extinction period, 1961–1978. J Geophys Res 106:2993–3003CrossRefGoogle Scholar
  257. Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287CrossRefGoogle Scholar
  258. Süring R (1910) A. Berson’s Bericht über die aerologische Expedition des köiglichen aeronautischen Observatoriums nach Ostafrika im Jahre 1908 (Report by A. Berson about the aerological expedition of the Royal Aeronautic Observatory to East Africa in 1908). Meteorol Z 27:536–542. (Translated and edited by Volken E, Brönnimann S, Meteorol Z 22:343–348, 2013)Google Scholar
  259. Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118CrossRefGoogle Scholar
  260. Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage–a missing link in solar-climate relationships. J Atmos Sol-Terr Phys 59:1225–1232CrossRefGoogle Scholar
  261. Symons GJ (ed) (1888) The eruption of Krakatoa, and subsequent phenomena. Report of the Krakatoa Committee of the Royal Society, Trübner & Company 499 ppGoogle Scholar
  262. Tang Q, Zhang X, Francis JA (2013) Extreme summer weather in Northern mid-latitudes linked to a vanishing cryosphere. Nat Clim Change 4:45–50CrossRefGoogle Scholar
  263. Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  264. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016Google Scholar
  265. Thompson DW, Solomon S, Kushner PJ et al (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749CrossRefGoogle Scholar
  266. Timmreck C (2012) Modeling the climatic effects of large explosive volcanic eruptions. WIREs Clim Change 3:545–564CrossRefGoogle Scholar
  267. Timmreck C, Lorenz SJ, Crowley TJ et al (2009) Limited temperature response to the very large ad 1258 volcanic eruption. Geophys Res Lett 36:L21708CrossRefGoogle Scholar
  268. Trenberth KE (1984) Signal versus noise in the Southern Oscillation. Mon Weather Rev 112:326–332CrossRefGoogle Scholar
  269. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  270. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  271. Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704CrossRefGoogle Scholar
  272. Trenberth KE, Smith L (2006) The vertical structure of temperature in the tropics: Different flavors of El Niño. J Clim 19:4956–4973CrossRefGoogle Scholar
  273. Trenberth KE, Branstator GW, Karoly D et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324CrossRefGoogle Scholar
  274. Trouet V, Taylor AH (2010) Multi-century variability in the Pacific North American circulation pattern reconstructed from tree rings. Clim Dyn 35:953–963CrossRefGoogle Scholar
  275. Troup AJ (1965) The ‘Southern Oscillation’. Q J R Meteorol Soc 91:490–506CrossRefGoogle Scholar
  276. Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761CrossRefGoogle Scholar
  277. Veryard RG, Ebdon RA (1961) Fluctuations in tropical stratospheric winds. Meteorol Mag 90:125–143Google Scholar
  278. Vicente-Serrano SM, López-Moreno JI, Lorenzo-Lacruz J et al (2011) The NAO impact on droughts in the Mediterranean region. In: Hydrological, socioeconomic and ecological impacts of the North Atlantic Oscillation in the Mediterranean region. Springer, Dordrecht/New York, pp 23–40Google Scholar
  279. Villalba R, Lara A, Masiokas MH et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern annular mode. Nat Geosci 5:793–798CrossRefGoogle Scholar
  280. Volney CF (1803) Tableau du climat et du sol des Etats-Unis d’Amérique, vol 1. Courcier-Dentu, ParisGoogle Scholar
  281. Walker GT (1923) Correlation in seasonal variation of weather VIII: A preliminary study of world weather. Mem India Met Dept 24:75–131Google Scholar
  282. Walker GT (1924) Correlation in seasonal variation of weather IX: A further study of world weather. Mem India Met Dept 25:275–332Google Scholar
  283. Wallace JM, Blackmon ML (1983) Observations of low-frequency atmospheric variability. In: Hoskins B, Pearce RP (eds) Large-scale dynamical processes in the atmosphere. Academic, London, pp 55–94Google Scholar
  284. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  285. Wallace JM, Hobbs PV (2006) Atmospheric science: An introductory survey, 2nd edn. International Geophysics. Academic Press, Amsterdam/BostonGoogle Scholar
  286. Wallace JM, Held IM, Thompson DW, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343:729–730CrossRefGoogle Scholar
  287. Walshaw CD (1989) GMB Dobson—the man and his work. Planet Space Sci 37:1485–1507CrossRefGoogle Scholar
  288. Wang B, Wu R, Lau KM (2001) Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the Western North Pacific–East Asian monsoons. J Clim 14:4073–4090CrossRefGoogle Scholar
  289. Wang C (2004) ENSO, atlantic climate variability, and the Walker and Hadley circulations. Adv Glob Change Res 21:173–202CrossRefGoogle Scholar
  290. Wang C, Lee Sk, Enfield DB (2007a) Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J Clim 20:5021–5040CrossRefGoogle Scholar
  291. Wang C, Kim D, Ekman AM, Barth MC, Rasch PJ (2009a) Impact of anthropogenic aerosols on Indian summer monsoon. Geophys Res Lett 36:L21704CrossRefGoogle Scholar
  292. Wang YM, Lean J, Sheeley N Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625:522CrossRefGoogle Scholar
  293. Wanner H, Brönnimann S, Casty C et al (2001) North Atlantic oscillation – concepts and studies. Surv Geophys 22:321–381CrossRefGoogle Scholar
  294. Watson AJ, Lovelock JE (1983) Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B 35:284–289CrossRefGoogle Scholar
  295. Webster PJ (2004) The elementary Hadley circulation. Adv Glob Change Res 21:9–60CrossRefGoogle Scholar
  296. Wegmann M, Brönnimann S, Bhend J et al (2014) Volcanic influence on European summer precipitation through monsoons: possible cause for “years without summer”. J Clim 27:3683–3691CrossRefGoogle Scholar
  297. Wild M, Folini D, Schär C et al (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134CrossRefGoogle Scholar
  298. Williamson H (1771) An attempt to account for the change of climate, which has been observed in the Middle Colonies in North-America. Trans Am Philos Soc 1, (Volume reprinted 1789, 336–345)Google Scholar
  299. Woeikof A (1895) Die Schneedecke in “paaren” und “unpaaren” Wintern. Meteorol Z 12:77–78Google Scholar
  300. Woollings T, Lockwood M, Masato G, Bell C, Gray L (2010) Enhanced signature of solar variability in Eurasian winter climate. Geophys Res Lett 37:L20805CrossRefGoogle Scholar
  301. Wunsch C (2002) What is the thermohaline circulation. Science 298:1179–1181CrossRefGoogle Scholar
  302. Xie SP, Carton JA (2004) Tropical atlantic variability: Patterns, mechanisms, and impacts. In: Wang C, Xie SP, Carton JA (eds) Earth’s climate. Geophysical Monograph Series 147, AGU, Washington, DC, pp 121–142Google Scholar
  303. Xie SP, Hu K, Hafner J et al (2009) Indian Ocean capacitor effect on Indo–Western Pacific climate during the summer following El Niño. J Clim 22:730–747CrossRefGoogle Scholar
  304. Yoshimori M, Stocker TF, Raible CC, Renold M (2005) Externally forced and internal variability in ensemble climate simulations of the maunder minimum. J Clim 18:4253–4270CrossRefGoogle Scholar
  305. Zanchettin D, Timmreck C, Bothe O et al (2013) Delayed winter warming: a robust decadal response to strong tropical volcanic eruptions? Geophys Res Lett 40:204–209CrossRefGoogle Scholar
  306. Zebiak SE, Cane MA (1987) A model El Niño–Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  307. Zubiaurre I, Calvo N (2012) The El Niño–Southern Oscillation (ENSO) Modoki signal in the stratosphere. J Geophys Res 117:D04104Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Brönnimann
    • 1
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations