Skip to main content

The Basis: Past Climate Observations and Methods

  • Chapter
Climatic Changes Since 1700

Part of the book series: Advances in Global Change Research ((AGLO,volume 55))

  • 1216 Accesses

Abstract

If you are worried about a thunderstorm forming near your town, if snowfall is imminent, if an El Niño event builds up in the Pacific, or if media reports that a heatwave strikes Australia, you can find a large amount of real-time information on weather and climate on the Internet. Just a few mouse clicks away, you will find observations, analyses, model simulations, satellite images, Radar data, and many other products (Fig. 2.1). Where does information on the atmosphere come from, what does it really tell us, and how can we today explore the weather patterns of the 18th century? In this chapter, we will cover these questions, starting with some general considerations of weather observations and measurements, the present day observing system, and historical climate observations. We cover uncertainties and problems in climate data and see how models can be used to learn about past climate and how they can be combined with observations. This chapter also covers climate proxies and the methods used to derive climate information from these proxies. Finally, this chapter concludes with a more detailed description of those datasets that form the basis of many of the analyses that follow in Chaps. 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Albrecht von Haller, 1708–1777, was a Swiss physician (anatomist), scientist, and poet of the Enlightenment. He is said to have published ca. 50,000 pages of scientific works of consistently high quality.

  2. 2.

    Heinrich Brandes, 1777–1834, was a German meteorologist, astronomer, and mathematician.

  3. 3.

    James Pollard Espy, 1785–1860, was an American meteorologist and one of the first to use the telegraph for collecting meteorological observations.

  4. 4.

    Cleveland Abbe, 1838–1916, was an astronomer and meteorologist and founder of the U.S. Weather Bureau.

  5. 5.

    Matthew Fontaine Maury, 1806–1873, was an American scientist (oceanographer and meteorologist). He published the first comprehensive book on oceanography.

  6. 6.

    Heinrich Wilhelm Dove, 1803–1879, was a German physicist and meteorologist and one of the first to study global climate. He is known for his works on winds.

  7. 7.

    Julius Hann, 1839–1921, was an Austrian meteorologist and climatologist and one of the founders of modern meteorology. Hann is known for the Föhn theory, among many other achievements. His “Handbuch der Klimatologie” (Hann 188318971908–1911) set the standard for five decades (see Stehr and von Storch 2000).

  8. 8.

    Francis Galton, 1822–1911, was a British scientist, known for his work in statistics (correlation), meteorology (weather maps, anticyclones, and weather variability), and eugenics. Galton was a cousin of Charles Darwin.

  9. 9.

    Wladimir Köppen, 1846–1940, was a German–Russian meteorologist, geographer, and climatologist. Among many other things, Köppen developed a classification of climates that is still used today (Köppen 1881).

  10. 10.

    Henry Francis Blanford, 1834–1893, was a British meteorologist and palaeontologist and first director of the India Meteorological Department.

  11. 11.

    Sir Gilbert Walker, 1868–1958, was a British mathematician and meteorologist. Walker worked for the India Meteorological Department from 1904 to 1924. He is best known for his work on climatic oscillations and statistics.

  12. 12.

    Felix Exner, 1876–1930, was an Austrian meteorologist and director of the Austrian Meteorological Service (Zentralanstalt für Geodynamik). Exner made important contributions to dynamic meteorology.

  13. 13.

    Alexander von Humboldt, 1769–1859, was a Prussian geographer, naturalist, and explorer. He was one of the most famous scientists of his time. His main work, “Kosmos” (von Humboldt 1845) is a compendium of science and nature.

  14. 14.

    Heinrich Wild, 1833–1902, was Swiss meteorologist. Wild was a physics professor in Bern and later founder of the Main Geophysical Observatory in St. Petersburg, Russia.

  15. 15.

    “Barometer, pluviometer, and thermometer are the main instruments of the meteorologist and have been used for over 200 years. Yet one would be very mistaken to trust the old measurements. [] And then the old temperature observations! Here, the inadequacy of the instruments pairs with insufficient placement of the instruments to render the observations completely useless.” (translated from Brückner 1890, pp. 133–134).

  16. 16.

    This solution is equivalent to a Bayesian framework, where x b would be called prior and x posterior.

  17. 17.

    Vilhelm Bjerknes, 1862–1951, was a Norwegian Meteorologist. He is known for his work on synoptic meteorology and was the founder of the Geophysical Institute in Bergen. Vilhelm Bjerknes is the father of meteorologist Jacob Bjerknes.

  18. 18.

    Lewis Fry Richardson, 1881–1953, was pioneer in numerical analysis in meteorology, numerical weather prediction, and modelling of conflict (Hunt 1998).

  19. 19.

    The spectral representation characterises the horizontal structure with a series expansion of spherical harmonics, whose coefficients are then determined. Truncation (mostly triangular truncation, denoted “T”) indicates the highest wave number represented.

  20. 20.

    Edward Lorenz, 1917–2008, was an American mathematician and meteorologist, and a professor at the Massachusetts Institute of Technology. Lorenz is the founder of chaos theory.

  21. 21.

    William Herschel, 1738–1822, was a British–German astronomer and composer. He discovered Uranus and several moons.

  22. 22.

    A temperature-dependent fractionation of water molecules with light or heavy oxygen isotopes (18O and16O) occurs during evaporation and condensation. This effect can be used for temperature reconstruction.

  23. 23.

    A spectrum in which all frequencies have the same power is called white, if low frequencies dominate it is called red, and if high frequencies dominate it is called blue.

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Ahmed M, Anchukaitis K, Buckley BM et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346

    Article  CAS  Google Scholar 

  • Allan RJ, Compo GP, Stone R, Luterbacher J, Brönnimann S (2011) The international atmospheric circulation reconstructions over the earth (ACRE) initiative. Bull Am Meteorol Soc 92:1421–1425

    Article  Google Scholar 

  • Annan JD, Hargreaves JC (2012) Identification of climatic state with limited proxy data. Clim Past 8:1141–1151

    Article  Google Scholar 

  • Aronova E, Baker KS, Oreskes N (2010) Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957–present. Hist Stud Nat Sci 40:183–224

    Article  Google Scholar 

  • Assmann R (1891) Ein Apparat zur Ventilation des feuchten Thermometers (A device for the ventilation of the wet-bulb thermometer). Meteorol Z 8:15–24. (Translated and edited by Volken E, Brönnimann S, Meteorol Z 21:423–430, 2012)

    Google Scholar 

  • Atkinson P, Lloyd C (eds) (2011) geoENV VII – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics. Springer, Dordrecht/Heidelberg/London/New York

    Google Scholar 

  • Auchmann R, Brönnimann S (2012) A physics-based correction model for homogenizing sub-daily temperature series. J Geophys Res 117:D17119

    Google Scholar 

  • Auer I, Böhm R, Jurkovic A et al (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Beisbart C (2012) How can computer simulations produce new knowledge? Eur J Philos Sci 2:395–434

    Article  Google Scholar 

  • Bengtsson L, Kanamitsu M, Kållberg P, Uppala S (1982) FGGE 4-dimensional data assimilation at ECMWF. Bull Am Meteorol Soc 63:29–43

    Google Scholar 

  • Bhend J, Franke J, Folini D, Wild M, Brönnimann S (2012) An ensemble-based approach to climate reconstructions. Clim Past 8:963–976

    Article  Google Scholar 

  • Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik (The problem of weather prediction, considered from the viewpoints of mechanics and physics). Meteorol Z 21:1–7. (Translated and edited by Volken E, Brönnimann S, Meteorol Z 18:663–667, 2009)

    Google Scholar 

  • Blunden J, Arndt DS (2012) State of the climate in 2011. Bull Am Meteorol Soc 93:S1–S282

    Article  Google Scholar 

  • Bodeker GE, Hassler B, Young PJ, Portmann RW (2013) A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations. Earth Syst Sci Data 5:31–43

    Article  Google Scholar 

  • Bodenmann T, Brönnimann S, Hadorn GH, Krüger T, Weissert H (2011) Perceiving, explaining, and observing climatic changes: an historical case study of the “year without a summer” 1816. Meteorol Z 20:577–587

    Article  Google Scholar 

  • Braconnot P, Harrison SP, Kageyama M et al (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424

    Article  Google Scholar 

  • Brandes HW (1819) Einige Resultate aus der Witterungs-Geschichte des Jahres 1783, und Bitte um Nachrichten aus jener Zeit. Ann Phys-Berlin 61:421–426

    Article  Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430

    Article  Google Scholar 

  • Breitenmoser P, Brönnimann S, Frank D (2014) Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim Past 10:437–449

    Article  Google Scholar 

  • Brohan P, Allan R, Freeman JE et al (2009) Marine observations of old weather. Bull Am Meteorol Soc 90:219–230

    Article  Google Scholar 

  • Brönnimann S (2012) Climatic Data. In: Philander SG, Golson JG (eds) Encyclopedia of global warming & climate change, 2nd edn. SAGE, Thousand Oaks, pp 307–309

    Google Scholar 

  • Brönnimann S, Annis JL, Vogler C, Jones PD (2007a) Reconstructing the Quasi-Biennial Oscillation back to the early 1900s. Geophys Res Lett 34:L22805

    Article  Google Scholar 

  • Brönnimann S, Grant AN, Compo GP et al (2012a) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598

    Article  Google Scholar 

  • Brönnimann S, Griesser T, Stickler A (2012b) A gridded monthly upper-air data set from 1918 to 1957. Clim Dyn 38:475–493

    Article  Google Scholar 

  • Brönnimann S, Bhend J, Franke J et al (2013a) A global historical ozone data set and prominent features of stratospheric variability prior to 1979. Atmos Chem Phys 13:9623–9639

    Article  CAS  Google Scholar 

  • Brönnimann S, Franke J, Breitenmoser P et al (2013b) Transient state estimation in paleoclimatology using data assimilation. PAGES News 21:74–75

    Google Scholar 

  • Brönnimann S, Mariani I, Schwikowski M, Auchmann R, Eichler A (2013c) Simulating the temperature and precipitation signal in an Alpine ice core. Clim Past 9:2013–2022

    Article  Google Scholar 

  • Brooks CEP (1922) The evolution of climate [Preface by Simpson, G.C.]. Benn Brothers, London

    Google Scholar 

  • Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. E. D. Hölzel, Wien and Olmütz

    Google Scholar 

  • Burt S (2012) The Weather Observer’s Handbook. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cassidy D (1985) Meteorology in Mannheim: The Palatine Meteorological Society, 1780–1795. Sudhoffs Archiv 69:8–25

    Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc C 53:405–425

    Article  Google Scholar 

  • CCMVal SPARC, Eyring V, Shepherd T, Waugh D (2010) SPARC report on the evaluation of chemistry–climate models, SPARC Rep. 5, WCRP-132. Tech. rep., SPARC

    Google Scholar 

  • Charney JG, Fjörtoft R, von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The Twentieth Century Reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Cook ER, Krusic PJ (2003) The North American Drought Atlas. American Geophysical Union, Fall Meeting 2003, abstract number GC52A-01

    Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian Monsoon Failure and Megadrought During the Last Millennium. Science 328:486–489

    Article  CAS  Google Scholar 

  • Daley R (1993) Atmospheric data analysis. Cambridge University Press, Cambridge/New York/Melbourne

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Della-Marta PM, Wanner H (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Clim 19:4179–4197

    Article  Google Scholar 

  • Dirren S, Hakim GJ (2005) Toward the assimilation of time-averaged observations. Geophys Res Lett 32:L04804

    Article  Google Scholar 

  • Dove WH (1852) Die Verbreitung der Wärme auf der Oberfläche der Erde: erläutert durch Isothermen, thermische Isanomalen und Temperaturcurven. Reimer, Berlin

    Google Scholar 

  • Dufour L (1870) Notes sur le problème de la variation du climat. Bulletin de la Société Vaudoise des Sciences naturelles 10:360–436

    Google Scholar 

  • Edwards PN (2010) A vast machine: Computer models, climate data, and the politics of global warming. MIT, Cambridge

    Google Scholar 

  • Efthymiadis D, Jones PD, Briffa KR et al (2006) Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 111:1–22

    Google Scholar 

  • Eichler A, Schwikowski M, Gäggeler HW et al (2000) Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). J Glaciol 46:507–515

    Article  CAS  Google Scholar 

  • Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998

    Article  CAS  Google Scholar 

  • Fischer AM, Schraner M, Rozanov E et al (2008) Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a chemistry-climate model. Atmos Chem Phys 8:7755–7777

    Article  CAS  Google Scholar 

  • Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–532

    Article  CAS  Google Scholar 

  • Franke J, Gonzàlez-Rouco J, Frank D, Graham EN (2011) 200 years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37:133–150

    Article  Google Scholar 

  • Franke J, Frank D, Raible CC, Esper J, Brönnimann S (2013) Spectral biases in tree-ring climate proxies. Nat Clim Change 3:360–364

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Gates WL (1992) AMIP: The atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970

    Article  Google Scholar 

  • Gibson JK, Kållberg P, Uppala S et al (1997) ERA Description, ECMWF Re-analysis Final Report Series, 1. Tech. rep., ECMWF, Reading, UK

    Google Scholar 

  • Glaser R (2008) Klimageschichte Mitteleuropas – 1200 Jahre Wetter, Klima, Katastrophen. WBG, Darmstadt

    Google Scholar 

  • Goosse H, Crespin E, de Montety A et al (2010) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res 115:D09108

    Google Scholar 

  • Griesser T, Brönnimann S, Grant A et al (2010) Reconstruction of global monthly upper-level temperature and geopotential height fields back to 1880. J Clim 23:5590–5609

    Article  Google Scholar 

  • Hakim GJ, Annan J, Brönnimann S et al (2013) Overview of data assimilation methods. PAGES News 21:72–73

    Google Scholar 

  • Hann J (1883) Handbuch der Klimatologie. Verlag J Engelhorn

    Google Scholar 

  • Hann J (1887) Atlas der Meteorologie. J. Perthes, Gotha

    Google Scholar 

  • Hann J (1897) Handbuch der Klimatologie. Allgemeine Klimatologie, vol. 1, 2nd edn.. Verlag J. Engelhorn, Stuttgart

    Google Scholar 

  • Hann J (1908–1911) Handbuch der Klimatologie, 3 Vols. Engelhorn, Stuttgart

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Hasselmann K (1993) Optimal fingerprints for the detection of time-dependent climate change. J Clim 6:1957–1971

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:1–12

    Google Scholar 

  • Hengl T (2009) A practical guide to geostatistical mapping. University of Amsterdam, Amsterdam

    Google Scholar 

  • Herschel W (1801) Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philos Trans 91:265–318

    Article  Google Scholar 

  • von Humboldt A (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cotta’scher Verlag, Stuttgart/Tübingen

    Google Scholar 

  • Ideler JL (1832) Über die angeblichen Veränderungen des Klima. Annalen der Erd-, Völker- und Staatenkunde (Berghaus’ Annalen) 5:417–471

    Google Scholar 

  • Isaksson E, Pohjola V, Jauhiainen T et al (2001) A new ice-core record from Lomonosovfonna, Svalbard: Viewing the 1920–97 data in relation to present climate and environmental conditions. J Glaciol 47:335–345

    Article  CAS  Google Scholar 

  • Isotta FA, Frei C, Weilguni V et al (2013) The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ et al (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J Geophys Res 117:D05127

    Google Scholar 

  • Jouzel J (2013) A brief history of ice core science over the last 50 yr. Clim Past 9:2525–2547

    Article  Google Scholar 

  • Juckes MN, Allen MR, Briffa KR et al (2007) Millennial temperature reconstruction intercomparison and evaluation. Clim Past 3:591–609

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res 116:D14103

    Google Scholar 

  • Kistler R, Collins W, Saha S et al (2001) The NCEP–NCAR 50–year reanalysis: Monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Köppen W (1881) Über mehrjährige Perioden der Witterung–III. Mehrjährige Änderungen der Temperatur 1841 bis 1875 in den Tropen der nördlichen und südlichen gemässigten Zone, an den Jahresmitteln untersucht. Zeitschrift der Österreichischen Gesellschaft für Meteorologie Bd XVI:141–150

    Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  CAS  Google Scholar 

  • Kuglitsch FG, Auchmann R, Bleisch R et al (2012) Break detection of annual Swiss temperature series. J Geophys Res 117:D13105

    Article  Google Scholar 

  • Laepple T, Werner M, Lohmann G (2011) Synchronicity of antarctic temperatures and local solar insolation on orbital timescales. Nature 471:91–94

    Article  CAS  Google Scholar 

  • Laprise R (1992) The resolution of global spectral models. Bull Am Meteorol Soc 73:1453–1454

    Google Scholar 

  • Le Treut H, Somerville R, Cubasch U et al (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94

    Article  Google Scholar 

  • Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann A 92:339–351

    Article  Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  CAS  Google Scholar 

  • Mann A (1790) Ueber die allmählichen Veränderungen der Temperatur und des Bodens in verschiedenen Climaten, nebst Untersuchungen über die Ursachen dieser Veränderungen. Historia et Commentationes Academiae Theodoro-Palatinat 6 Physicum Mannheimii:82–111 (reprinted in abbreviated form in J Phys (Grens’s J) 2: 231–244, 1790)

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762

    Article  Google Scholar 

  • Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  CAS  Google Scholar 

  • Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009a) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883

    Article  CAS  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S et al (2009b) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260

    Article  CAS  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    Article  CAS  Google Scholar 

  • Moore GWK, Holdsworth G, Alverson K (2002) Climate change in the North Pacific region over the past three centuries. Nature 420:401–403

    Article  CAS  Google Scholar 

  • Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117:D08101

    Google Scholar 

  • Müller P (2010) Constructing climate knowledge with computer models. WIREs Clim Change 1:565–580

    Article  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R et al (2011) Multiproxy summer and winter surface air temperature field reconstructions for Southern South America covering the past centuries. Clim Dyn 37:35–51

    Article  Google Scholar 

  • Olivier S, Schwikowski M, Brütsch S et al (2003) Glaciochemical investigation of an ice core from Belukha glacier, Siberian Altai. Geophys Res Lett 30:2019

    Article  CAS  Google Scholar 

  • Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432

    Article  Google Scholar 

  • Osborn TJ, Briffa KR (2004) The real color of climate change. Science 306:621–622

    Article  CAS  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405

    Article  Google Scholar 

  • Persson A, Langen PL, Ditlevsen P, Vinther BM (2011) The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland. J Geophys Res 116:D20120

    Article  CAS  Google Scholar 

  • Pettersson O (1914) Climatic variations in historic and prehistoric time. Ur Svenska Hydrografisk-Biologiska Kommisionens Skrifter 5, 26 pp

    Google Scholar 

  • Pfister C (1975) Agrarkonjunktur und Witterungsverlauf im westlichen Schweizer Mittelland 1755–1797. Ein Beitrag zur Umwelt- und Wirtschaftsgeschichte des 18. Jahrhunderts. Lang, Bern

    Google Scholar 

  • Pfister C (1999) Wetternachhersage: 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Haupt, Bern

    Google Scholar 

  • Ramirez E, Hoffmann G, Taupin J et al (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350

    Article  CAS  Google Scholar 

  • Rayner NA, Brohan P, Parker DE et al (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Rohde R, Muller R, Jacobson R et al (2013) Berkeley earth temperature averaging process. Geoinform Geostat: Overv 1:2

    Google Scholar 

  • Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:L05703

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan HL et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Scaife AA, Kucharski F, Folland CK et al (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33:603–614

    Article  Google Scholar 

  • Schraner M, Rozanov E, Schnadt Poberaj C et al (2008) Technical note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes. Atmos Chem Phys 8:5957–5974

    Article  CAS  Google Scholar 

  • van der Schrier G, Barkmeijer J (2005) Bjerknes’ hypothesis on the coldness during ad 1790–1820 revisited. Clim Dyn 25:537–553

    Article  Google Scholar 

  • Schubert SD, Rood RB, Pfaendtner J (1993) An assimilated dataset for earth science applications. Bull Am Meteorol Soc 74:2331–2342

    Article  Google Scholar 

  • Sime LC, Lang N, Thomas ER, Benton AK, Mulvaney R (2011) On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores. J Geophys Res 116:D20117

    Article  CAS  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2005) A description of the advanced research WRF version 2. Technical report, DTIC Document

    Google Scholar 

  • Smerdon JE (2012) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs Clim Change 3:63–77

    Article  Google Scholar 

  • Smith SR, Bourassa MA, Long M (2011) Pirate attacks affect Indian Ocean climate research. EOS Trans Am Geophys Union 92:225–226

    Article  Google Scholar 

  • Stehr N, von Storch H (eds) (2000) Eduard Brückner – the sources and consequences of climate change and climate variability in historical times. Kluwer Academic, Dordrecht

    Google Scholar 

  • Stewart MM, Grosjean M, Kuglitsch FG, Nussbaumer SU, von Gunten L (2011) Reconstructions of late Holocene paleofloods and glacier length changes in the Upper Engadine, Switzerland (ca. 1450 BC–AD 420). Palaeogeogr Palaeoclimatol 311:215–223

    Article  Google Scholar 

  • Stickler A, Grant AN, Ewen T et al (2010) The comprehensive historical upper-air network. Bull Am Meteorol Soc 91:741–751

    Article  Google Scholar 

  • Stier P, Feichter J, Kinne S et al (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156

    Article  CAS  Google Scholar 

  • von Storch H, Zorita E, Jones JM et al (2004) Reconstructing past climate from noisy data. Science 306:679–682

    Article  CAS  Google Scholar 

  • Sturm C, Zhang Q, Noone D (2010) An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim Past 6:115–129

    Article  Google Scholar 

  • Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453:646–649

    Article  CAS  Google Scholar 

  • Thompson LG, Mosley-Thompson E, Davis ME et al (2002) Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 298:589–593

    Article  CAS  Google Scholar 

  • Thorne PW, Vose RS (2010) Reanalyses suitable for characterizing long-term trends. Bull Am Meteorol Soc 91:353–361

    Article  Google Scholar 

  • Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–2439

    Article  Google Scholar 

  • Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J (2012) A novel approach for the detection of inhomogeneities affecting climate time series. J Appl Meteorol Clim 51:317–326

    Article  Google Scholar 

  • Trachsel M, Eggenberger U, Grosjean M, Blass A, Sturm M (2008) Mineralogy-based quantitative precipitation and temperature reconstructions from annually laminated lake sediments (Swiss Alps) since AD 1580. Geophys Res Lett 35:L13707

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Usteri P (1817) Eröffnungsrede. In: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, vol 3

    Google Scholar 

  • Venema VKC, Mestre O, Aguilar E et al (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115

    Article  Google Scholar 

  • Wagenbach D (1989) Environmental records in alpine glaciers. In: Oeschger H, Langway CC (eds) The environmental record in glaciers and ice sheets. Wiley, New York, pp 69–73

    Google Scholar 

  • Wallis J (1665) A relation concerning the late earthquake Neer Oxford; Together with some observations of the sealed weatherglass, and the barometer both upon that phaenomenon, and in general. Phil Trans 1:166–171

    Google Scholar 

  • Wang XL, Wen QH, Wu Y (2007b) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Clim 46:916–931

    Article  Google Scholar 

  • Werner M, Mikolajewicz U, Heimann M, Hoffmann G (2000) Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophys Res Lett 27:723–726

    Article  Google Scholar 

  • Weusthoff T (2011) Weather type classification at MeteoSwiss: Introduction of new automatic classification schemes. Arbeitsbericht MeteoSchweiz Nr. 235, Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz, Zürich

    Google Scholar 

  • Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the central Alps as indicators of Holocene climatic oscillations. Arct Alp Res 29:445–458

    Article  Google Scholar 

  • Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2010) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past 6:627–644

    Article  Google Scholar 

  • WMO (1992) International meteorological vocabulary. WMO, Geneva

    Google Scholar 

  • WMO (1998) Final report, commission for basic systems. Working group on data processing, task group on WMO/CTBTO matters. WMO, Geneva

    Google Scholar 

  • WMO (2008) Guide to meteorological instruments and methods of observation, 7th edn. WMO, Geneva

    Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ et al (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brönnimann, S. (2015). The Basis: Past Climate Observations and Methods. In: Climatic Changes Since 1700. Advances in Global Change Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-19042-6_2

Download citation

Publish with us

Policies and ethics