Advertisement

The Basis: Past Climate Observations and Methods

  • Stefan Brönnimann
Part of the Advances in Global Change Research book series (AGLO, volume 55)

Abstract

If you are worried about a thunderstorm forming near your town, if snowfall is imminent, if an El Niño event builds up in the Pacific, or if media reports that a heatwave strikes Australia, you can find a large amount of real-time information on weather and climate on the Internet. Just a few mouse clicks away, you will find observations, analyses, model simulations, satellite images, Radar data, and many other products (Fig. 2.1). Where does information on the atmosphere come from, what does it really tell us, and how can we today explore the weather patterns of the 18th century? In this chapter, we will cover these questions, starting with some general considerations of weather observations and measurements, the present day observing system, and historical climate observations. We cover uncertainties and problems in climate data and see how models can be used to learn about past climate and how they can be combined with observations. This chapter also covers climate proxies and the methods used to derive climate information from these proxies. Finally, this chapter concludes with a more detailed description of those datasets that form the basis of many of the analyses that follow in Chaps. 3 and 4.

Keywords

Data Assimilation Tree Ring Tree Ring Width Total Column Ozone National Weather Service 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Ahmed M, Anchukaitis K, Buckley BM et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346CrossRefGoogle Scholar
  3. Allan RJ, Compo GP, Stone R, Luterbacher J, Brönnimann S (2011) The international atmospheric circulation reconstructions over the earth (ACRE) initiative. Bull Am Meteorol Soc 92:1421–1425CrossRefGoogle Scholar
  4. Annan JD, Hargreaves JC (2012) Identification of climatic state with limited proxy data. Clim Past 8:1141–1151CrossRefGoogle Scholar
  5. Aronova E, Baker KS, Oreskes N (2010) Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957–present. Hist Stud Nat Sci 40:183–224CrossRefGoogle Scholar
  6. Assmann R (1891) Ein Apparat zur Ventilation des feuchten Thermometers (A device for the ventilation of the wet-bulb thermometer). Meteorol Z 8:15–24. (Translated and edited by Volken E, Brönnimann S, Meteorol Z 21:423–430, 2012)Google Scholar
  7. Atkinson P, Lloyd C (eds) (2011) geoENV VII – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  8. Auchmann R, Brönnimann S (2012) A physics-based correction model for homogenizing sub-daily temperature series. J Geophys Res 117:D17119Google Scholar
  9. Auer I, Böhm R, Jurkovic A et al (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  10. Beisbart C (2012) How can computer simulations produce new knowledge? Eur J Philos Sci 2:395–434CrossRefGoogle Scholar
  11. Bengtsson L, Kanamitsu M, Kållberg P, Uppala S (1982) FGGE 4-dimensional data assimilation at ECMWF. Bull Am Meteorol Soc 63:29–43Google Scholar
  12. Bhend J, Franke J, Folini D, Wild M, Brönnimann S (2012) An ensemble-based approach to climate reconstructions. Clim Past 8:963–976CrossRefGoogle Scholar
  13. Bjerknes V (1904) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik (The problem of weather prediction, considered from the viewpoints of mechanics and physics). Meteorol Z 21:1–7. (Translated and edited by Volken E, Brönnimann S, Meteorol Z 18:663–667, 2009)Google Scholar
  14. Blunden J, Arndt DS (2012) State of the climate in 2011. Bull Am Meteorol Soc 93:S1–S282CrossRefGoogle Scholar
  15. Bodeker GE, Hassler B, Young PJ, Portmann RW (2013) A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations. Earth Syst Sci Data 5:31–43CrossRefGoogle Scholar
  16. Bodenmann T, Brönnimann S, Hadorn GH, Krüger T, Weissert H (2011) Perceiving, explaining, and observing climatic changes: an historical case study of the “year without a summer” 1816. Meteorol Z 20:577–587CrossRefGoogle Scholar
  17. Braconnot P, Harrison SP, Kageyama M et al (2012) Evaluation of climate models using palaeoclimatic data. Nat Clim Change 2:417–424CrossRefGoogle Scholar
  18. Brandes HW (1819) Einige Resultate aus der Witterungs-Geschichte des Jahres 1783, und Bitte um Nachrichten aus jener Zeit. Ann Phys-Berlin 61:421–426CrossRefGoogle Scholar
  19. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  20. Breitenmoser P, Brönnimann S, Frank D (2014) Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Clim Past 10:437–449CrossRefGoogle Scholar
  21. Brohan P, Allan R, Freeman JE et al (2009) Marine observations of old weather. Bull Am Meteorol Soc 90:219–230CrossRefGoogle Scholar
  22. Brönnimann S (2012) Climatic Data. In: Philander SG, Golson JG (eds) Encyclopedia of global warming & climate change, 2nd edn. SAGE, Thousand Oaks, pp 307–309Google Scholar
  23. Brönnimann S, Annis JL, Vogler C, Jones PD (2007a) Reconstructing the Quasi-Biennial Oscillation back to the early 1900s. Geophys Res Lett 34:L22805CrossRefGoogle Scholar
  24. Brönnimann S, Grant AN, Compo GP et al (2012a) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598CrossRefGoogle Scholar
  25. Brönnimann S, Griesser T, Stickler A (2012b) A gridded monthly upper-air data set from 1918 to 1957. Clim Dyn 38:475–493CrossRefGoogle Scholar
  26. Brönnimann S, Bhend J, Franke J et al (2013a) A global historical ozone data set and prominent features of stratospheric variability prior to 1979. Atmos Chem Phys 13:9623–9639CrossRefGoogle Scholar
  27. Brönnimann S, Franke J, Breitenmoser P et al (2013b) Transient state estimation in paleoclimatology using data assimilation. PAGES News 21:74–75Google Scholar
  28. Brönnimann S, Mariani I, Schwikowski M, Auchmann R, Eichler A (2013c) Simulating the temperature and precipitation signal in an Alpine ice core. Clim Past 9:2013–2022CrossRefGoogle Scholar
  29. Brooks CEP (1922) The evolution of climate [Preface by Simpson, G.C.]. Benn Brothers, LondonGoogle Scholar
  30. Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. E. D. Hölzel, Wien and OlmützGoogle Scholar
  31. Burt S (2012) The Weather Observer’s Handbook. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Cassidy D (1985) Meteorology in Mannheim: The Palatine Meteorological Society, 1780–1795. Sudhoffs Archiv 69:8–25Google Scholar
  33. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc C 53:405–425CrossRefGoogle Scholar
  34. CCMVal SPARC, Eyring V, Shepherd T, Waugh D (2010) SPARC report on the evaluation of chemistry–climate models, SPARC Rep. 5, WCRP-132. Tech. rep., SPARCGoogle Scholar
  35. Charney JG, Fjörtoft R, von Neumann J (1950) Numerical integration of the barotropic vorticity equation. Tellus 2:237–254CrossRefGoogle Scholar
  36. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The Twentieth Century Reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  37. Cook ER, Krusic PJ (2003) The North American Drought Atlas. American Geophysical Union, Fall Meeting 2003, abstract number GC52A-01Google Scholar
  38. Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian Monsoon Failure and Megadrought During the Last Millennium. Science 328:486–489CrossRefGoogle Scholar
  39. Daley R (1993) Atmospheric data analysis. Cambridge University Press, Cambridge/New York/MelbourneGoogle Scholar
  40. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  41. Della-Marta PM, Wanner H (2006) A method of homogenizing the extremes and mean of daily temperature measurements. J Clim 19:4179–4197CrossRefGoogle Scholar
  42. Dirren S, Hakim GJ (2005) Toward the assimilation of time-averaged observations. Geophys Res Lett 32:L04804CrossRefGoogle Scholar
  43. Dove WH (1852) Die Verbreitung der Wärme auf der Oberfläche der Erde: erläutert durch Isothermen, thermische Isanomalen und Temperaturcurven. Reimer, BerlinGoogle Scholar
  44. Dufour L (1870) Notes sur le problème de la variation du climat. Bulletin de la Société Vaudoise des Sciences naturelles 10:360–436Google Scholar
  45. Edwards PN (2010) A vast machine: Computer models, climate data, and the politics of global warming. MIT, CambridgeGoogle Scholar
  46. Efthymiadis D, Jones PD, Briffa KR et al (2006) Construction of a 10-min-gridded precipitation data set for the Greater Alpine Region for 1800–2003. J Geophys Res 111:1–22Google Scholar
  47. Eichler A, Schwikowski M, Gäggeler HW et al (2000) Glaciochemical dating of an ice core from upper Grenzgletscher (4200 m a.s.l.). J Glaciol 46:507–515CrossRefGoogle Scholar
  48. Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998CrossRefGoogle Scholar
  49. Fischer AM, Schraner M, Rozanov E et al (2008) Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a chemistry-climate model. Atmos Chem Phys 8:7755–7777CrossRefGoogle Scholar
  50. Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–532CrossRefGoogle Scholar
  51. Franke J, Gonzàlez-Rouco J, Frank D, Graham EN (2011) 200 years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method. Clim Dyn 37:133–150CrossRefGoogle Scholar
  52. Franke J, Frank D, Raible CC, Esper J, Brönnimann S (2013) Spectral biases in tree-ring climate proxies. Nat Clim Change 3:360–364CrossRefGoogle Scholar
  53. Fritts HC (1976) Tree rings and climate. Academic, LondonGoogle Scholar
  54. Gates WL (1992) AMIP: The atmospheric model intercomparison project. Bull Am Meteorol Soc 73:1962–1970CrossRefGoogle Scholar
  55. Gibson JK, Kållberg P, Uppala S et al (1997) ERA Description, ECMWF Re-analysis Final Report Series, 1. Tech. rep., ECMWF, Reading, UKGoogle Scholar
  56. Glaser R (2008) Klimageschichte Mitteleuropas – 1200 Jahre Wetter, Klima, Katastrophen. WBG, DarmstadtGoogle Scholar
  57. Goosse H, Crespin E, de Montety A et al (2010) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res 115:D09108Google Scholar
  58. Griesser T, Brönnimann S, Grant A et al (2010) Reconstruction of global monthly upper-level temperature and geopotential height fields back to 1880. J Clim 23:5590–5609CrossRefGoogle Scholar
  59. Hakim GJ, Annan J, Brönnimann S et al (2013) Overview of data assimilation methods. PAGES News 21:72–73Google Scholar
  60. Hann J (1883) Handbuch der Klimatologie. Verlag J EngelhornGoogle Scholar
  61. Hann J (1887) Atlas der Meteorologie. J. Perthes, GothaGoogle Scholar
  62. Hann J (1897) Handbuch der Klimatologie. Allgemeine Klimatologie, vol. 1, 2nd edn.. Verlag J. Engelhorn, StuttgartGoogle Scholar
  63. Hann J (1908–1911) Handbuch der Klimatologie, 3 Vols. Engelhorn, StuttgartGoogle Scholar
  64. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  65. Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  66. Hasselmann K (1993) Optimal fingerprints for the detection of time-dependent climate change. J Clim 6:1957–1971CrossRefGoogle Scholar
  67. Haylock MR, Hofstra N, Klein Tank AMG et al (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:1–12Google Scholar
  68. Hengl T (2009) A practical guide to geostatistical mapping. University of Amsterdam, AmsterdamGoogle Scholar
  69. Herschel W (1801) Observations tending to investigate the nature of the sun, in order to find the causes or symptoms of its variable emission of light and heat; with remarks on the use that may possibly be drawn from solar observations. Philos Trans 91:265–318CrossRefGoogle Scholar
  70. von Humboldt A (1845) Kosmos. Entwurf einer physischen Weltbeschreibung, vol 1. Cotta’scher Verlag, Stuttgart/TübingenGoogle Scholar
  71. Ideler JL (1832) Über die angeblichen Veränderungen des Klima. Annalen der Erd-, Völker- und Staatenkunde (Berghaus’ Annalen) 5:417–471Google Scholar
  72. Isaksson E, Pohjola V, Jauhiainen T et al (2001) A new ice-core record from Lomonosovfonna, Svalbard: Viewing the 1920–97 data in relation to present climate and environmental conditions. J Glaciol 47:335–345CrossRefGoogle Scholar
  73. Isotta FA, Frei C, Weilguni V et al (2013) The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675CrossRefGoogle Scholar
  74. Jones PD, Lister DH, Osborn TJ et al (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J Geophys Res 117:D05127Google Scholar
  75. Jouzel J (2013) A brief history of ice core science over the last 50 yr. Clim Past 9:2525–2547CrossRefGoogle Scholar
  76. Juckes MN, Allen MR, Briffa KR et al (2007) Millennial temperature reconstruction intercomparison and evaluation. Clim Past 3:591–609CrossRefGoogle Scholar
  77. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  78. Kanamitsu M, Ebisuzaki W, Woollen J et al (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  79. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res 116:D14103Google Scholar
  80. Kistler R, Collins W, Saha S et al (2001) The NCEP–NCAR 50–year reanalysis: Monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  81. Köppen W (1881) Über mehrjährige Perioden der Witterung–III. Mehrjährige Änderungen der Temperatur 1841 bis 1875 in den Tropen der nördlichen und südlichen gemässigten Zone, an den Jahresmitteln untersucht. Zeitschrift der Österreichischen Gesellschaft für Meteorologie Bd XVI:141–150Google Scholar
  82. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407CrossRefGoogle Scholar
  83. Kuglitsch FG, Auchmann R, Bleisch R et al (2012) Break detection of annual Swiss temperature series. J Geophys Res 117:D13105CrossRefGoogle Scholar
  84. Laepple T, Werner M, Lohmann G (2011) Synchronicity of antarctic temperatures and local solar insolation on orbital timescales. Nature 471:91–94CrossRefGoogle Scholar
  85. Laprise R (1992) The resolution of global spectral models. Bull Am Meteorol Soc 73:1453–1454Google Scholar
  86. Le Treut H, Somerville R, Cubasch U et al (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  87. Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94CrossRefGoogle Scholar
  88. Ljungqvist FC (2010) A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr Ann A 92:339–351CrossRefGoogle Scholar
  89. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  90. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  91. Mann A (1790) Ueber die allmählichen Veränderungen der Temperatur und des Bodens in verschiedenen Climaten, nebst Untersuchungen über die Ursachen dieser Veränderungen. Historia et Commentationes Academiae Theodoro-Palatinat 6 Physicum Mannheimii:82–111 (reprinted in abbreviated form in J Phys (Grens’s J) 2: 231–244, 1790)Google Scholar
  92. Mann ME, Bradley RS, Hughes MK (1999) Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys Res Lett 26:759–762CrossRefGoogle Scholar
  93. Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  94. Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009a) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883CrossRefGoogle Scholar
  95. Mann ME, Zhang Z, Rutherford S et al (2009b) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  96. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  97. Moore GWK, Holdsworth G, Alverson K (2002) Climate change in the North Pacific region over the past three centuries. Nature 420:401–403CrossRefGoogle Scholar
  98. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117:D08101Google Scholar
  99. Müller P (2010) Constructing climate knowledge with computer models. WIREs Clim Change 1:565–580CrossRefGoogle Scholar
  100. Neukom R, Luterbacher J, Villalba R et al (2011) Multiproxy summer and winter surface air temperature field reconstructions for Southern South America covering the past centuries. Clim Dyn 37:35–51CrossRefGoogle Scholar
  101. Olivier S, Schwikowski M, Brütsch S et al (2003) Glaciochemical investigation of an ice core from Belukha glacier, Siberian Altai. Geophys Res Lett 30:2019CrossRefGoogle Scholar
  102. Onogi K, Tsutsui J, Koide H et al (2007) The JRA-25 reanalysis. J Meteorol Soc Jpn 85:369–432CrossRefGoogle Scholar
  103. Osborn TJ, Briffa KR (2004) The real color of climate change. Science 306:621–622CrossRefGoogle Scholar
  104. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  105. Persson A, Langen PL, Ditlevsen P, Vinther BM (2011) The influence of precipitation weighting on interannual variability of stable water isotopes in Greenland. J Geophys Res 116:D20120CrossRefGoogle Scholar
  106. Pettersson O (1914) Climatic variations in historic and prehistoric time. Ur Svenska Hydrografisk-Biologiska Kommisionens Skrifter 5, 26 ppGoogle Scholar
  107. Pfister C (1975) Agrarkonjunktur und Witterungsverlauf im westlichen Schweizer Mittelland 1755–1797. Ein Beitrag zur Umwelt- und Wirtschaftsgeschichte des 18. Jahrhunderts. Lang, BernGoogle Scholar
  108. Pfister C (1999) Wetternachhersage: 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Haupt, BernGoogle Scholar
  109. Ramirez E, Hoffmann G, Taupin J et al (2003) A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia. Earth Planet Sci Lett 212:337–350CrossRefGoogle Scholar
  110. Rayner NA, Brohan P, Parker DE et al (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469CrossRefGoogle Scholar
  111. Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648CrossRefGoogle Scholar
  112. Rohde R, Muller R, Jacobson R et al (2013) Berkeley earth temperature averaging process. Geoinform Geostat: Overv 1:2Google Scholar
  113. Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: Extremes, a multi-century perspective, and changes in temperature sensitivity. Geophys Res Lett 35:L05703CrossRefGoogle Scholar
  114. Saha S, Moorthi S, Pan HL et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  115. Scaife AA, Kucharski F, Folland CK et al (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33:603–614CrossRefGoogle Scholar
  116. Schraner M, Rozanov E, Schnadt Poberaj C et al (2008) Technical note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes. Atmos Chem Phys 8:5957–5974CrossRefGoogle Scholar
  117. van der Schrier G, Barkmeijer J (2005) Bjerknes’ hypothesis on the coldness during ad 1790–1820 revisited. Clim Dyn 25:537–553CrossRefGoogle Scholar
  118. Schubert SD, Rood RB, Pfaendtner J (1993) An assimilated dataset for earth science applications. Bull Am Meteorol Soc 74:2331–2342CrossRefGoogle Scholar
  119. Sime LC, Lang N, Thomas ER, Benton AK, Mulvaney R (2011) On high-resolution sampling of short ice cores: dating and temperature information recovery from Antarctic Peninsula virtual cores. J Geophys Res 116:D20117CrossRefGoogle Scholar
  120. Skamarock WC, Klemp JB, Dudhia J et al (2005) A description of the advanced research WRF version 2. Technical report, DTIC DocumentGoogle Scholar
  121. Smerdon JE (2012) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. WIREs Clim Change 3:63–77CrossRefGoogle Scholar
  122. Smith SR, Bourassa MA, Long M (2011) Pirate attacks affect Indian Ocean climate research. EOS Trans Am Geophys Union 92:225–226CrossRefGoogle Scholar
  123. Stehr N, von Storch H (eds) (2000) Eduard Brückner – the sources and consequences of climate change and climate variability in historical times. Kluwer Academic, DordrechtGoogle Scholar
  124. Stewart MM, Grosjean M, Kuglitsch FG, Nussbaumer SU, von Gunten L (2011) Reconstructions of late Holocene paleofloods and glacier length changes in the Upper Engadine, Switzerland (ca. 1450 BC–AD 420). Palaeogeogr Palaeoclimatol 311:215–223CrossRefGoogle Scholar
  125. Stickler A, Grant AN, Ewen T et al (2010) The comprehensive historical upper-air network. Bull Am Meteorol Soc 91:741–751CrossRefGoogle Scholar
  126. Stier P, Feichter J, Kinne S et al (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156CrossRefGoogle Scholar
  127. von Storch H, Zorita E, Jones JM et al (2004) Reconstructing past climate from noisy data. Science 306:679–682CrossRefGoogle Scholar
  128. Sturm C, Zhang Q, Noone D (2010) An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology. Clim Past 6:115–129CrossRefGoogle Scholar
  129. Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453:646–649CrossRefGoogle Scholar
  130. Thompson LG, Mosley-Thompson E, Davis ME et al (2002) Kilimanjaro ice core records: Evidence of Holocene climate change in tropical Africa. Science 298:589–593CrossRefGoogle Scholar
  131. Thorne PW, Vose RS (2010) Reanalyses suitable for characterizing long-term trends. Bull Am Meteorol Soc 91:353–361CrossRefGoogle Scholar
  132. Tolwinski-Ward SE, Evans MN, Hughes MK, Anchukaitis KJ (2011) An efficient forward model of the climate controls on interannual variation in tree-ring width. Clim Dyn 36:2419–2439CrossRefGoogle Scholar
  133. Toreti A, Kuglitsch FG, Xoplaki E, Luterbacher J (2012) A novel approach for the detection of inhomogeneities affecting climate time series. J Appl Meteorol Clim 51:317–326CrossRefGoogle Scholar
  134. Trachsel M, Eggenberger U, Grosjean M, Blass A, Sturm M (2008) Mineralogy-based quantitative precipitation and temperature reconstructions from annually laminated lake sediments (Swiss Alps) since AD 1580. Geophys Res Lett 35:L13707CrossRefGoogle Scholar
  135. Uppala SM, Kållberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  136. Usteri P (1817) Eröffnungsrede. In: Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, vol 3Google Scholar
  137. Venema VKC, Mestre O, Aguilar E et al (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115CrossRefGoogle Scholar
  138. Wagenbach D (1989) Environmental records in alpine glaciers. In: Oeschger H, Langway CC (eds) The environmental record in glaciers and ice sheets. Wiley, New York, pp 69–73Google Scholar
  139. Wallis J (1665) A relation concerning the late earthquake Neer Oxford; Together with some observations of the sealed weatherglass, and the barometer both upon that phaenomenon, and in general. Phil Trans 1:166–171Google Scholar
  140. Wang XL, Wen QH, Wu Y (2007b) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Clim 46:916–931CrossRefGoogle Scholar
  141. Werner M, Mikolajewicz U, Heimann M, Hoffmann G (2000) Borehole versus isotope temperatures on Greenland: Seasonality does matter. Geophys Res Lett 27:723–726CrossRefGoogle Scholar
  142. Weusthoff T (2011) Weather type classification at MeteoSwiss: Introduction of new automatic classification schemes. Arbeitsbericht MeteoSchweiz Nr. 235, Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz, ZürichGoogle Scholar
  143. Wick L, Tinner W (1997) Vegetation changes and timberline fluctuations in the central Alps as indicators of Holocene climatic oscillations. Arct Alp Res 29:445–458CrossRefGoogle Scholar
  144. Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2010) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past 6:627–644CrossRefGoogle Scholar
  145. WMO (1992) International meteorological vocabulary. WMO, GenevaGoogle Scholar
  146. WMO (1998) Final report, commission for basic systems. Working group on data processing, task group on WMO/CTBTO matters. WMO, GenevaGoogle Scholar
  147. WMO (2008) Guide to meteorological instruments and methods of observation, 7th edn. WMO, GenevaGoogle Scholar
  148. Woodruff SD, Worley SJ, Lubker SJ et al (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Stefan Brönnimann
    • 1
  1. 1.Institute of GeographyUniversity of BernBernSwitzerland

Personalised recommendations