Advertisement

Extended Marshall–Olkin Model and Its Dual Version

  • Jayme PintoEmail author
  • Nikolai Kolev
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 141)

Abstract

We propose an extension of the generalized bivariate Marshall–Olkin model assuming dependence between the random variables involved. Probabilistic, aging properties, and survival copula representation of the extended model are obtained and illustrated by examples. Bayesian analysis is performed and possible applications are discussed. A dual version of extended Marshall–Olkin model is introduced and related stochastic order comparisons are presented.

Notes

Acknowledgments

The authors are grateful for the precise referee suggestions which highly improved earlier versions of the manuscript. The first author acknowledges the sponsorship of Central Bank of Brazil under the Graduate Program PPG. The second author is partially supported by FAPESP (2013/07375-0 and 2011/51305-0) and CNPq grants. We are thankful to Leandro Ferreira for the help with OpenBugs software.

References

  1. 1.
    Baglioni, A., Cherubini, U.: Within and between systemic country risk. Theory and evidence from the sovereign crisis in Europe. J. Econ. Dyn. Control 37, 1581–1597 (2013)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Balakrishnan, N., Lai, C.-D.: Continuous Bivariate Distributions, 2nd edn. Springer, New York (2009)zbMATHGoogle Scholar
  3. 3.
    Barlow, R., Proschan, F.: Statistical Theory of Reliability and Life Testing. Silver Spring, Maryland (1981)Google Scholar
  4. 4.
    Barlow, R., Marshall, A., Proschan, F.: Properties of probability distributions with monotone hazard rate. Ann. Math. Stat. 34, 375–389 (1963)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivar. Anal. 93, 313–339 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Block, H., Basu, A.: A continuous bivariate exponential extension. J. Am. Stat. Assoc. 69, 1031–1037 (1974)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Dabrowska, D.: Kaplan-Meier estimate on the plane. Ann. Stat. 16, 1475–1489 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Dimitrov, B., Kolev, N.: The BALM copula. Int. J. Stoch. Anal. 2013, 1–6 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Fang, R., Li, X.: A note on bivariate dual generalized Marshall-Olkin distributions with applications. Probab. Eng. Inf. Sci. 27, 367–374 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Freund, J.: A bivariate extension of the exponential distribution. J. Am. Stat. Assoc. 56, 971–977 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gumbel, E.: Bivariate exponential distributions. J. Am. Stat. Assoc. 55, 698–707 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gupta, R.C., Gupta, R.D., Gupta, P.L.: Modeling failure time data by Lehman alternatives. Commun. Stat. Theory Methods 27, 887–904 (1988)CrossRefGoogle Scholar
  13. 13.
    Jaschke, S., Siburg, K., Stoimenov, P.: Modelling dependence of extreme events in energy markets using tail copulas. J. Energy Mark. 5(4), 63–80 (2013)Google Scholar
  14. 14.
    Karlis, D.: ML estimation for multivariate shock models via an EM algorithm. Ann. Inst. Stat. Math. 55, 817–830 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Keilson, J., Sumita, U.: Uniform stochastic ordering and related inequalities. Can. J. Stat. 10, 181–198 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kundu, D., Dey, A.: Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm. Comput. Stat. Data Anal. 53, 956–965 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kundu, D., Gupta, R.: Modified Sarhan-Balakrishnan singular bivariate distribution. J. Stat. Plan. Inference 140, 525–538 (2010)MathSciNetGoogle Scholar
  18. 18.
    Kundu, D., Gupta, A.: Bayes estimation for the Marshall-Olkin bivariate Weibull distribution. Comput. Stat. Data Anal. 57, 271–281 (2013)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Lehmann, E.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153 (1966)CrossRefzbMATHGoogle Scholar
  20. 20.
    Li, X.: Duality of the multivariate distributions of Marshall-Olkin type and tail dependence. Commun. Stat. Theory Methods 37, 1721–1733 (2008)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, X., Pellerey, F.: Generalized Marshall-Olkin distributions and related bivariate aging properties. J. Multivar. Anal. 102, 1399–1409 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Lunn, D., Spiegelhalter, D., Thomas, A., Best, N.: The BUGS project: evolution, critique and future directions (with discussion). Stat. Med. 28, 3049–3082 (2009)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mai, J.-F., Scherer, M.: Simulating Copulas. Imperial College Press, London (2012)CrossRefzbMATHGoogle Scholar
  24. 24.
    Marshall, A., Olkin, I.: A multivariate exponential distribution. J. Am. Stat. Assoc. 62, 30–41 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    McNeil, A., Frey, L., Embrechts, P.: Quantitative Risk Management. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  26. 26.
    Meintanis, S.: Test of fit for Marshall-Olkin distributions with applications. J. Stat. Plan. Inference 137, 3954–3963 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mirhosseini, S., Amini, M., Kundu, D., Dolati, A.: On a new absolutely continuous bivariate generalized exponential distribution. To appear in Statistical Methods and Applications (2015)Google Scholar
  28. 28.
    Mohsin, M., Kazianka, H., Pilz, J., Gebhardt, A.: A new bivariate exponential distribution for modeling moderately negative dependence. Stat. Methods Appl. 23, 123–148 (2014)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Mulero, J., Pellerey, F.: Bivariate aging properties under Archimedean dependence structures. Commun. Stat. Theory Methods 39, 3108–3121 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Muliere, P., Scarsini, M.: Generalization of Marshall-Olkin type of distributions. Ann. Inst. Stat. Math. 39, 429–441 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)zbMATHGoogle Scholar
  32. 32.
    Pinto, J.: Deepening the notions of dependence and aging in bivariate probability distributions. Ph.D. thesis, Sao Paulo University (2014)Google Scholar
  33. 33.
    Pinto, J., Kolev, N.: Sibuya-type bivariate lack of memory property. J. Multivar. Anal. 134, 119–128 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Pinto, J., Kolev, N.: Copula representations for invariant dependence functions. In: Glau, K., Scherer, M., Zagst, R. (eds.) Innovations in Quantitative Risk Management. Springer Series in Probability & Statistics, vol. 99, pp. 411–421. Springer, New York (2015)CrossRefGoogle Scholar
  35. 35.
    Sankaran, P.G., Gleeja, V.L.: On bivariate reversed hazard rates. J. Jpn. Stat. Soc. 36, 213–224 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Shaked, M., Shanthikumar, J.: Stochastic Orders. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  37. 37.
    Shoaee, S., Khorram, E.: A new absolute continuous bivariate generalized exponential distribution. J. Stat. Plan. Inference 142, 2203–2220 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Sibuya, M.: Bivariate extreme statistics I. Ann. Inst. Stat. Math. 11, 195–210 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Singpurwalla, N.: Reliability Analysis: A Bayesian Perspective. Wiley, Chichester (2006)Google Scholar
  40. 40.
    Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A.: Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. Ser. A 64, 583–639 (2002)CrossRefzbMATHGoogle Scholar
  41. 41.
    Spiegelhalter, D., Thomas, A., Best, N., Lunn, D.: WinBugs Version 1.4, User Manual. Institute of Public Health and Department of Epidemiology and Public Health. Imperial College School of Medicine, London (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of São PauloSao PauloBrazil

Personalised recommendations