Skip to main content

Microbe–Mineral Interactions: Exploring Avenues Towards Development of a Sustainable Microbial Technology for Coal Beneficiation

  • Chapter
Environmental Microbial Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 45))

Abstract

Microbe–mineral interactions are very pervasive in nature. Since coal is a chief source of nonrenewable energy and finds its application in a wide variety of sectors, the importance of microbe–mineral interaction is indispensible for developing a sustainable microbial coal biotechnology. The underlying necessity of microbe–mineral interaction is also linked with acid mine drainage that is a universal environmental problem in iron- and sulfur-rich environments. In the view of the fact that microbes act as a storehouse of several novel biomolecules or enzymes, they can be used for bioprocessing on an industrial scale incorporating innovative ideas and advanced technologies. The coal mines comprise of several synergistic interactions occurring between microbes and minerals which vary according to pH, temperature, mineralogy, and metal concentration, ultimately forming a viable microbial community.

Certain specific groups of microbes associate symbiotically with each other in order to fulfill their nutritional requirements and endure their growth and survival. Bacterial species belonging to the group α-, β-, γ-, and δ-proteobacteria have been found to predominate in the coal mine areas, while certain other bacterial lines of descent fall under the division Nitrospira, Firmicutes, and Acidobacteria. Similarly, archeal families comprising of Thermoplasmatales and Sulfolobales have been reported from the acid mine drainages. However, few reports have additionally focused on the existence of eukaryotes in these sites. Majority of these microbial species employ essential enzymes required for various key transformations occurring in an acid mine drainage. Certain autotrophic groups are capable of oxidizing or reducing iron or sulfur to obtain their sole source of energy, whereas certain other heterotrophic groups are adept in utilizing organic compounds for their sustenance. Thus, most of the subsurface interactions occurring in the environment proceed through iron or sulfur oxidation, organic carbon oxidation, fixation of carbon or nitrogen, extracellular polymeric slime production, as well as iron and sulfur reduction. This review highlights the necessary interactions occurring between microbes and minerals, which would further assist in understanding the innate mechanism behind various crucial processes occurring in nature. Moreover, this understanding of the inherent mechanisms responsible in the microbe–mineral interactions would lead to the development of an efficient and eco-friendly technology toward the judicious use of natural resources and pave way towards a sustainable microbial coal technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharaya C, Kar RN, Sukla LB (2001) Bacterial removal of sulphur from three different coals. Fuel 80:2207–2216

    Article  Google Scholar 

  • Armstrong SM, Sankey BM, Voordouw G (1995) Conversion of dibenzothiophene to biphenyl by sulfate reducing bacteria isolated from oil field production facilities. Biotechnol Lett 17:1133–1136

    Article  CAS  Google Scholar 

  • Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremediat Biodegrad 1:1–8

    Article  Google Scholar 

  • Austin CB, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  Google Scholar 

  • Baba AA, Adekola FA, Atata RF, Ahmed RN, Panda S (2011) Bioleaching of Zn (II) and Pb (II) from Nigerian sphalerite and galena ores by a mixed culture of acidophilic bacteria. Trans Nonferrous Met Soc China 21:2535–2541

    Article  CAS  Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  CAS  PubMed  Google Scholar 

  • Barooah PK, Baruah MK (1996) Sulphur in Assam coal. Fuel Process Technol 46:83–97

    Article  CAS  Google Scholar 

  • Becker HG, Sinitsyn AP (1993) Mn-peroxidase from Pleurotus ostreatus: the action on the lignin. Biotechnol Lett 15:289–294

    Article  CAS  Google Scholar 

  • Bhutto AW, Bazmi AA, Zahedi G (2013) Underground coal gasification: from fundamentals to applications. Prog Energy Combust Sci 39:189–214

    Article  CAS  Google Scholar 

  • Bonnefoy V, Holmes D (2012) Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environ Microbiol 14:1597–1611

    Article  CAS  PubMed  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin-degrading enzymes of commercial button mushroom, Agaricus bisporus. Appl Environ Microbiol 60:960–965

    CAS  PubMed Central  PubMed  Google Scholar 

  • Catcheside DEA, Ralph JP (2002) Bioconversion of coal by Fungi. Mycota 10:343–354

    CAS  Google Scholar 

  • Chandra D, Roy P, Mishra AK, Chakrabarti JN, Prasad NK, Chaudhuri SG (1980) Removal of sulphur from coal by Thiobacillus ferrooxidans and by mixed acidophilic bacteria present in coal. Fuel 59:249–252

    Article  CAS  Google Scholar 

  • Ciftci H, Akcil A (2010) Effect of biooxidation conditions on cyanide consumption and gold recovery from a refractory flotation gold concentrate. Hydrometallurgy 104:142–149

    Article  CAS  Google Scholar 

  • Dahlberg MD, Rohrer RL, Fauth DJ, Sprecher R, Olson GJ (1993) Biodesulfurization of dibenzothiophene sulfone by Arthrobacter sp. and studies with Illinois no. 6 coal. Fuel 72:1645–1649

    Article  CAS  Google Scholar 

  • Dodson PJ, Evans CS, Harvey PH, Palmer JM (1987) Production and properties of an extracellular peroxidase from Coriolus versicolor which catalyses Ca-Cb cleavage in a lignin model compound. FEMS Microbiol Lett 42:17–22

    CAS  Google Scholar 

  • Duran N, Ferrer I, Rodriguez J (1987) Ligninases from Chrysonilia sitophila (TFB-27441). Appl Biochem Biotechnol 16:157–167

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) Laccase from the ligninolytic fungus Pycnoporus cinnabarinus. Appl Environ Microbiol 62:1151–1158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erust C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Tech Biotechnol 88:2115–2132

    Article  Google Scholar 

  • Esther J, Panda S, Behera SK, Sukla LB, Pradhan N, Mishra BK (2013) Effect of dissimilatory Fe (III) reducers on bio-reduction and nickel–cobalt recovery from Sukinda chromite-overburden. Bioresour Technol 146:762–766

    Article  CAS  PubMed  Google Scholar 

  • Fahreus G, Reinhammar B (1967) Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chem Scand 21:2367–2378

    Article  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  CAS  PubMed  Google Scholar 

  • Fakoussa RM (1981) Coal as a substrate for microorganisms: investigation of the microbial decomposition of (untreated) bituminous coals. Doctoral Thesis, Rhein Friedrich-Wilhelms University, Bonn

    Google Scholar 

  • Fisher WL (1974) Texas lignite: near-surface and deep-basin resources. Bureau of economic geology The university of Texas at Austin, Texas 78712: report of investigations—79

    Google Scholar 

  • Forrester IT, Grabski AC, Mishra C, Kelley BD, Strickland WN, Leatham GF, Bugess RR (1990) Characteristics and N-terminal amino acid sequence of a manganese peroxidase purified from Lentinula edodes culture grown on a commercial wood substrate. Appl Microbiol Biotechnol 33:359–365

    Article  CAS  PubMed  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold MH (1983) An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Arch Biochem Biophys 242:329–341

    Article  Google Scholar 

  • Gupta N, Roychoudhury PK (2005) Biotechnology of desulphurization of diesel: prospects and challenges. Appl Microbiol Biotechnol 66:356–366

    Article  CAS  PubMed  Google Scholar 

  • Hartdegen FJ, Coburn JM, Roberts RL (1984) Microbial desulfurization of petroleum. Chem Eng Prog 80:63–67

    CAS  Google Scholar 

  • Hatakka A, Kantelinen A, TervilaÈ -Wilo A, Viikari L (1987) Production of ligninases by Phlebia radiata in agitated conditions. In: Odier E (ed) Lignin-enzymic and microbial degradation. INRA, Paris, pp 335–340

    Google Scholar 

  • Hodek W (1994) The chemical structure of coal in regard of microbiological degradation. Fuel Process Technol 40:369–378

    Article  CAS  Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-degrading fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:419–424

    Article  CAS  Google Scholar 

  • IPRO 346 – fall (2006) Design of coal desulfurization processes to improve the environment midterm report, Illinois Institute of Technology, pp. 25

    Google Scholar 

  • Ishii Y, Konoshi J, Okada H, Hirasawa K, Onaka T, Suzuki M (2000) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem Biophys Res Commun 270:81–88

    Article  CAS  PubMed  Google Scholar 

  • Johansson T, Nyman PO (1987) A manganese (II)-dependent extracellular peroxidase from the white-rot fungus Trametes versicolor. Acta Chem Scand B 41:762–765

    Article  Google Scholar 

  • Kantelinen A, Hatakka A, Viikari A (1989) Production of lignin peroxidase and laccase by Phlebia radiata. Appl Microbiol Biotechnol 31:234–239

    Article  CAS  Google Scholar 

  • Kargi F (1982) Microbial coal desulphurization. Enzyme Microb Technol 4:13–19

    Article  CAS  Google Scholar 

  • Kargi F, Robinson JM (1986) Removal of organic sulphur from bituminous coal: use of the thermophilic microorganism Sulfolobus acidocaldarius. Fuel 65:397–399

    Article  CAS  Google Scholar 

  • Kawatra SK, Eisele TC (2001) Coal desulphurization, high-efficiency preparation methods. Taylor and Franscis, New York

    Google Scholar 

  • Kilbane JJ (1990) Sulfur-specific metabolism of organic compounds. Resour Conservat Recycl 69:590–596

    Google Scholar 

  • Kim HY, Kim TS, Kim BH (1990) Degradation of organic compounds and the reduction of dibenzothiophene to biphenyl and hydrogen sulfide by Desulfovibrio desulfuricans M6. Biotechnol Lett 12:761–764

    Article  CAS  Google Scholar 

  • Kimura Y, Asada Y, Kuwahara M (1991) Molecular analysis of a Bjerkandera adusta lignin peroxidase gene. Appl Microbiol Biotechnol 35:510–514

    Article  CAS  PubMed  Google Scholar 

  • Kirimura K, Harada K, Iwasawa H, Tanaka T, Iwasaki Y, Furuya T, Ishii Y, Kino K (2004) Identification and functional analysis of the genes encoding dibenzothiophene-desulfurizing enzymes from thermophilic bacteria. Appl Microbiol Biotechnol 65:703–713

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Shimada M (1985) Lignin biodegradation: the microorganisms involved and the physiology and biochemistry of degradation by white-rot fungi. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, pp 579–605

    Google Scholar 

  • Kodama K, Nakatani S, Umehara K, Shimizu K, Minoda Y, Yamada K (1970) Stoichiometry. Part III. Isolation and identification of products from dibenzothiophene. Agric Biol Chem 34:1320–1324

    Article  CAS  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  • Lee MK, Senius JD, Grossman MJ (1995) Sulfur-specific microbial desulfurization of sterically hindered analogs of dibenzothiophene. Appl Environ Microbiol 61:4362–4366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine DG, Schlosberg RH, Silbernagel BG (1982) Understanding the chemistry and physics of coal structure. Proc Natl Acad Sci 79:3365–3370

    Article  CAS  PubMed Central  Google Scholar 

  • Li W, Zhang Y, Wang MD, Shi Y (2005) Biodesulfurization of dibenzothiophene and other organic sulfur compounds by a newly isolated Microbacterium strain ZD-M2. FEMS Microbiol Lett 247:45–50

    Article  CAS  PubMed  Google Scholar 

  • Maltseva OV, Niku-Paavola MZ, Leontievsky AA, Myasoedova NM, Golovieva LA (1991) Ligninolytic enzymes of the white-rot fungus Panus tigrinus. Biotechnol Appl Biochem 13:291–302

    CAS  Google Scholar 

  • Mapelli F, Marasco R, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral-microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  PubMed  Google Scholar 

  • Masau RJ, Oh JK, Suzuki I (2001) Mechanism of oxidation of inorganic sulphur compounds by thiosulfate-grown Thiobacillus thiooxidans. Can J Microbiol 47:348–358

    Article  CAS  PubMed  Google Scholar 

  • McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264

    Article  CAS  PubMed  Google Scholar 

  • Mingfang L, Zhongxuan G, Jianmin Z, Huizhou L, Jiayong C (2003) Microbial desulfurization of model and straight-run diesel oils. J Chem Technol Biotechnol 78:873–876

    Article  Google Scholar 

  • Mishra S, Panda PP, Pradhan N, Satapathy D, Subudhi U, Biswal SK, Mishra BK (2014) Effect of native bacteria Sinomonas flava 1C and Acidithiobacillus ferrooxidans on desulphurization of Meghalaya coal and its combustion properties. Fuel 117:415–421

    Article  CAS  Google Scholar 

  • Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid-mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 49:756–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nikku-Pavola ML, Karhunen E, Kantelinen A, Viikari L, Lundell T, Hatakka A (1990) The effect of culture conditions on the production of lignin-modifying enzymes by white-rot fungus Phlebia radiata. J Biotechnol 13:211–221

    Article  Google Scholar 

  • Nojiri H, Habe H, Omori T (2001) Bacterial degradation of aromatic compounds via angular dioxygenation. J Gen Appl Microbiol 47:279–305

    Article  CAS  PubMed  Google Scholar 

  • Odier E, Mozuch MD, KalyanaramanB KTK (1988) Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose: quinone oxidoreductase. Biochemie 70:847–852

    Article  CAS  Google Scholar 

  • Osorio H, Mangold S, Denis Y, Ñancucheo I, Esparza M, Johnson DB, Bonnefoy V, Dopson M, Holmes DS (2013) Anaerobic Sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Appl Environ Microbiol 79:2172–2181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Panda S, Parhi PK, Pradhan N, Mohapatra UB, Sukla LB, Park KH (2012a) Extraction of copper from bacterial leach liquor of a low grade chalcopyrite test heap using LIX 984N-C. Hydrometallurgy 121–124:116–119

    Article  Google Scholar 

  • Panda S, Sanjay K, Sukla LB, Pradhan N, Subbaiah T, Mishra BK, Prasad MSR, Ray SK (2012b) Insights into heap bioleaching of low grade chalcopyrite ores: a pilot scale study. Hydrometallurgy 125–126:157–165

    Article  Google Scholar 

  • Panda S, Sarangi CK, Pradhan N, Subbaiah T, Sukla LB, Mishra BK, Bhatoa GL, Prasad MSR, Ray SK (2012c) Bio-hydrometallurgical processing of low grade chalcopyrite for recovery of copper metal. Korean J Chem Eng 26:781–785

    Article  Google Scholar 

  • Panda S, Parhi PK, Nayak BD, Pradhan N, Mohapatra UB, Sukla LB (2013a) Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer. Bioresour Technol 130:332–338

    Article  CAS  PubMed  Google Scholar 

  • Panda S, Pradhan N, Mohapatra UB, Panda SK, Rath SS, Nayak BD, Sukla LB, Mishra BK (2013b) Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage. Front Environ Sci Eng 7:281–293

    Article  CAS  Google Scholar 

  • Panda S, Rout PC, Sarangi CK, Mishra S, Pradhan N, Mohapatra UB, Subbaiah T, Sukla LB, Mishra BK (2014) Recovery of copper from a surface altered chalcopyrite contained ball mill spillage through bio-hydrometallurgical route. Korean J Chem Eng 31:452–460

    Article  CAS  Google Scholar 

  • Panda S, Mishra S, Rao DS, Pradhan N, Mohapatra UB, Angadi S, Mishra BK (2015) Extraction of copper from copper slag: mineralogical insights, physical beneficiation and bioleaching studies. Korean J Chem Eng 32((4):667–676. doi:10.1007/s11814-014-0298-6

    Article  Google Scholar 

  • Parida BK, Panda S, Misra N, Panda PK, Mishra BK (2014) BBProF: an asynchronous application server for identification of potential bioleaching bacteria. Geomicrobiol J 31:299–314

    Article  CAS  Google Scholar 

  • Pazmiño DET, Winkler M, Glieder A, Fraaije MW (2010) Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J Biotechnol 146:9–24

    Article  Google Scholar 

  • Pradhan N, Nathsarma KC, Rao KS, Sukla LB, Mishra BK (2008) Heap bioleaching of chalcopyrite. Miner Eng 21:355–365

    Article  CAS  Google Scholar 

  • Prayuenyong P (2002) Coal biodesulphurization process. J Sci Technol 24:493–507

    CAS  Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS (1999) Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145:5–13

    Article  CAS  PubMed  Google Scholar 

  • Reinhammar B, MalstroÈm BG (1981) Blue copper-containing oxidases. In: Spiro TG (ed) Copper proteins (Metal ions in biology, Vol 3). Wiley, New York, pp 109–149

    Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  CAS  PubMed  Google Scholar 

  • Rossi G (1993) Biodepyritization of coal: achievements and problems. Fuel 72:1581–1592

    Article  CAS  Google Scholar 

  • Ruettimann C, Schweber E, Salas L, Cullen D, Vicuna R (1992) Ligninolytic enzymes of the white-rot basidiomycete Phlebia brevispora and Ceriporiopsis subvermispora. Biotechnol Appl Biochem 16:64–76

    Google Scholar 

  • Ryan B, Ledda A (1997) A Review of Sulphur in Coal: with Specific Reference to the Telkwa Deposit, North-Western British Columbia. Geological Fieldwork, 22 p.

    Google Scholar 

  • Ryu HW, Chang YK, Kim SD (1993) Microbial coal desulphurization in airlift bioreactor by sulphur-oxidizing bacterium Thiobacillus ferrooxidans. Fuel Process Technol 36:267–275

    Article  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa PG, Schippers A (2001) (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidases. J Basic Microbiol 38:51–59

    Article  CAS  PubMed  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Microbiol Biotechnol 65:319–321

    CAS  Google Scholar 

  • Schippers A, Jozsa P, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Microbiol Biotechnol 62:3424–3431

    CAS  Google Scholar 

  • Schippers A, Rohwerder T, Sand W (1999) Intermediary sulphur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110

    Article  CAS  Google Scholar 

  • Schneega I, Hofrichter M, Scheibner K, Fritsche W (1997) Purification of the main manganese peroxidase isoenzyme MnP2 from the white-rot fungus Nematoloma frowardii. Appl Microbiol Biotechnol 48:602–605

    Article  CAS  Google Scholar 

  • Schoemaker HE, Harvey PJ, Bowen RM, Palmer JM (1985) On the mechanism of enzymatic lignin breakdown. FEBS Lett 183:7–12

    Article  CAS  Google Scholar 

  • Selvakumaran P, Lawrence A, Lakshminarasimhan M, Bakthavatsalam AK (2013) Mineralogical influence of mining intrusions in CFB combustion of Indian lignite. Int J Energy Environ Eng 34:1–11

    Google Scholar 

  • Siezen RJ, Wilson G (2009) Genomics update: bioleaching genomics. J Microb Biotechnol 2:297–303

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulphurization of refractory organic sulphur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biophasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenocete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Minoda Y, Kodama K, Nakatani S, Aasaki T (1968) Microbial conversion of petro-sulfur compounds. Part I. Isolation and identification of dibenzothiophene-utilizing bacteria. Agric Biol Chem 32:840–845

    Article  CAS  Google Scholar 

  • Yamada KO, Morimoto M, Tani Y (2001) Degradation of dibenzothiophene by sulfate-reducing bacteria cultured in the presence of only nitrogen gas. J Biosci Bioeng 91:91–93

    Article  Google Scholar 

  • Ziegenhagen D, Hofrichter M (1998) Degradation of humic acids by manganese peroxidase from the white-rot fungus Clitocybula dusenii. J Basic Microbiol 38:289–299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The first author Mrs. Srabani Mishra and the second author Mr. Sandeep Panda are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Senior Research Fellowship. NP and SKB are thankful to Ministry of Steel for financial support. All the authors would like to thank the Director of CSIR-IMMT for his kind permission to publish this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srabani Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, S., Panda, S., Pradhan, N., Biswal, S.K., Sukla, L.B., Mishra, B.K. (2015). Microbe–Mineral Interactions: Exploring Avenues Towards Development of a Sustainable Microbial Technology for Coal Beneficiation. In: Sukla, L., Pradhan, N., Panda, S., Mishra, B. (eds) Environmental Microbial Biotechnology. Soil Biology, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-19018-1_2

Download citation

Publish with us

Policies and ethics