Skip to main content

Advances in Manganese Pollution and Its Bioremediation

  • Chapter
Environmental Microbial Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 45))

Abstract

The requirement for manganese (Mn) has augmented extensively owing to the intense production of steel and the mounting paucity of natural deposits. The widespread mining, mineral processing, and further human activities have faced a severe consequence in the generation of massive quantity of manganese mining waste residues. The inappropriate supervision and unprocessed liberation of these wastes have resulted in the spread of Mn to the contiguous atmosphere, soil and groundwater pollution, and loads of severe ecological tribulations. Chronic and acute exposure of this metal pollutant leads to lethal consequences and is clinically categorized by the multiple symptoms of neurotoxicity including cognitive and psychiatric symptoms, Parkinson’s disease, manganism, motor system dysfunction, and other neurodegenerative diseases. The advancement of bioremediation technology focuses on accomplishing successful removal of these metal pollutants by increasing the effectiveness of microbes related to metal-solubilizing activities. This chapter describes a complete advance in the research on manganese environmental pollution, manganese compound-induced toxicity, and recent approaches for the microbial remediation of manganese pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C, Kar RN, Shukla LB (2001) Microbial extraction of manganese from low grade Mn-ore. Trans Indian Inst Met 54(3):99–103

    CAS  Google Scholar 

  • Acharya C, Kar RN, Sukla LB (2003) Studies on reaction mechanism of bioleaching of manganese ore. Miner Eng 16:1027–1030

    Article  CAS  Google Scholar 

  • Acharya C, Kar RN, Sukla LB, Misra VN (2004) Fungal leaching of manganese ore. Trans Indian Inst Met 57(5):501–508

    CAS  Google Scholar 

  • Achurra LE, Lacassie JP, Le Roux JP et al (2009) Manganese nodules in the Miocene Bahia Inglesa formation, north-central Chile: petrography, geochemistry, genesis and palaeoceanographic significance. Sediment Geol 217:128–139

    Article  CAS  Google Scholar 

  • Anderson CR, Dick GJ, Chu ML et al (2009) Aurantimonas manganoxydans, sp. nov. and Aurantimonas litoralis, sp. nov.: Mn(II) oxidizing representatives of a globally distributed clade of alpha-Proteobacteria from the order Rhizobiales. Geomicrobiol J 26:189–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: a review on black shale. Hydrometallurgy 117–118:1–12

    Article  Google Scholar 

  • Azizi D, Shafaei SZ, Noaparast M, Abdollahi H (2012) Modeling and optimization of low-grade Mn bearing ore leaching using response surface methodology and central composite rotatable design. Trans Nonferrous Met Soc 22(9):2295–2305

    Article  CAS  Google Scholar 

  • Behera SK, Sukla LB (2012) Kinetics study for lateritic Chromite overburden leaching by organic (oxalic) acid. Elixir Pollut 53:11890–11893

    Google Scholar 

  • Bekker A, Slack JF, Planavsky N et al (2010) Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ Geol 105:467–508

    Article  CAS  Google Scholar 

  • Cao J-b, Li X-m, Ouyang Y-z et al (2012) Manganese-electrolysed slag treatment: bioleaching of manganese by Fusarium sp. Environ Technol 33(11):1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Chandramohan D, Loka Bharathi PA, Nair S, Matondkar SGP (1987) Bacteriology of ferromanganese nodules from the Indian Ocean. Geomicrobiol J 5:17–31

    Article  CAS  Google Scholar 

  • Cordova FM, Aguiar AS, Peres TV, Lopes MW, Gonçalves FM (2012) In vivo manganese exposure modulates Erk, Akt and Darpp-32 in the striatum of developing rats, and impairs their motor function. PLoS One 7(3), e33057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Couillard D, Chartier M, Mercier G (1991) Bacterial leaching of heavy metals from aerobic sludge. Bioresour Technol 36:293–302

    Article  CAS  Google Scholar 

  • Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102:7381–7387

    Article  CAS  PubMed  Google Scholar 

  • Das AP, Swain S, Panda S et al (2012a) Reductive acid leaching of low grade manganese ores. Geomaterials 2:70–72

    Article  CAS  Google Scholar 

  • Das AP, Shukla LB, Pradhan N (2012b) Microbial recovery of manganese using staphylococcus epidermidis. Int J Nonferrous Metall 1:9–12

    Article  CAS  Google Scholar 

  • Dick GJ, Lee YE, Tebo BM (2006) Manganese (II)-oxidizing Bacillus spores in Guaymas basin hydrothermal sediments and plumes. Appl Environ Microbiol 72:3184–3190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Ann N Y Acad Sci 1012:115–129

    Article  CAS  PubMed  Google Scholar 

  • Doshi J (2007) Bioleaching of lateritic nickel ore using chemolithotrophic micro organisms (Acidithiobacillus ferrooxidans)

    Google Scholar 

  • Duan N, Xin B, Chen B et al (2011) Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresour Technol 102(2):1683–1687

    Article  PubMed  Google Scholar 

  • Duka YD, Svetlana I, Ilchenko MM et al (2011) Impact of open manganese mines on the health of children dwelling in the surrounding Area. Emerg Health Threats J 4:7110. doi:10.3402/ehtj.v4i0.7110

    PubMed  Google Scholar 

  • Ehrlich HL (2002) Geomicrobiology, 4th edn. Dekker, New York

    Google Scholar 

  • Ehrlich HL, Newman DK (2009) Geomicrobiology, 5th edn. CRC/Taylor and Francis, Boca Raton, FL

    Google Scholar 

  • Eileen G, James TS (1982) Widespread distribution of ability to oxidize manganese among freshwater bacteria. Appl Environ Microbiol 4:509–511

    Google Scholar 

  • Elaine B (2011) Secretariat of the Pacific Community Deep Sea Minerals: Manganese nodules, a physical, biological, environmental, and technical review, vol. 1B. Secretariat of the Pacific Community (SPC)

    Google Scholar 

  • Fisher KG (2010) Manganese removal in base metal hydrometallurgical processes

    Google Scholar 

  • Flynn MR, Susi P (2009) Neurological risks associated with manganese exposure from welding operations—a literature review. Int J Hyg Environ Health 212(5):459–469

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  PubMed  Google Scholar 

  • Gallegos MV, Falco LR, Peluso MA et al (2013) Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination. Waste Manage 33:1483–1490

    Article  CAS  Google Scholar 

  • Ge XX, Cai GP, Zeng GM (2004) Study on harmless disposal and comprehensive utilization of manganese sulfate waste residue. Chinas Manganese Ind 22:11–14

    Google Scholar 

  • Gerber GB, Leonard A, Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34

    Article  CAS  PubMed  Google Scholar 

  • Han M, Zhao Z, Gao W et al (2013) Study on the factors affecting simultaneous removal of ammonia and manganese by pilot-scale biological aerated filter (BAF) for drinking water pre-treatment. Bioresour Technol 145:17–24

    Article  CAS  PubMed  Google Scholar 

  • Hariprasad D, Dash B, Ghosh MK et al (2009) Mn recovery from medium grade ore using a waste cellulosic reductant. Indian J Chem Technol 16:322–327

    CAS  Google Scholar 

  • Hasan HA, Abdullah SRS, Kofli NT et al (2012) Effective microbes for simultaneous bio-oxidation of ammonia and manganese in biological aerated filter system. Bioresour Technol 124:355–363

    Article  PubMed  Google Scholar 

  • Ilyas S, Chi R, Bhatti HN et al (2012) Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite. Bioprocess Biosyst Eng 35:433–440

    Article  CAS  PubMed  Google Scholar 

  • Johnson DB (2013) Development and application of biotechnologies in the metal mining industry. Environ Sci Pollut Res 11:7768–7776

    Article  Google Scholar 

  • Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Juarez-Santillan LF, Lucho-Constantino CA, Vazquez-Rodríguez GA, Ceron-Ubilla NM, Beltran-Hernandez RI (2010) Manganese accumulation in plants of the mining zone of Hidalgo. Mexico Bioresour Technol 101:5836–5841

    Article  CAS  PubMed  Google Scholar 

  • Kenneth P (2010) Manganese nodules and the age of the ocean floor. J Creation 24(3):82–86

    Google Scholar 

  • Kierkegaard S (2007) EU battery directive, charging up the batteries: squeezing more capacity and power into the new EU battery directive. Comput Law Secur Rep 23:357–364

    Article  Google Scholar 

  • Kirschvink JL (1992) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52. ISBN 0521366151

    Google Scholar 

  • Kirschvink JL, Gaidos EJL, Bertani E et al (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konishii K, Asai S (1995) Bioleaching of marine manganese nodules by acidophilic sulfur-oxidizing bacteria. In: Proceedings of the ISOPE – Ocean mining symposium, Tsukuba, Japan, pp 21–22

    Google Scholar 

  • Li H, Zhang Z, Tang S et al (2008) Ultrasonically assisted acid extraction of manganese from slag. Ultrason Sonochem 15:339–343

    Article  CAS  PubMed  Google Scholar 

  • Li HL, Li AM, Cao CM et al (2009) Study on bioleaching of manganese from electrolytic manganese residue. Chin J Environ Eng 3:1667–1672

    CAS  Google Scholar 

  • Liu H, Teng C, Cheng Y (2004) A semi-empirical model for bacterial growth and bioleaching of Acidithiobacillus spp. Chem Eng J 99:77–87

    Article  CAS  Google Scholar 

  • Liu YG, Zhou M, Zeng GM et al (2008) Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: effects of substrate concentration. Bioresour Technol 99:4124–4129

    Article  CAS  PubMed  Google Scholar 

  • Maruthamuthu S, Palanichamy S, Manickam ST, Rajendran A (2002) Microfouling of manganese-oxidizing bacteria in Tuticorin harbour waters. Curr Sci 82:7–10

    Google Scholar 

  • Maynard JB (2010) The chemistry of manganese ores through time: a signal of increasing diversity of earth surface environments. Econ Geol 105:535–552

    Article  CAS  Google Scholar 

  • McArthur JM, Sikdar PK, Nath B et al (2012) Sedimentological control on Mn and other trace elements, in groundwater of the Bengal Delta. Environ Sci Technol 46:669–676

    Article  CAS  PubMed  Google Scholar 

  • Mehta KD, Das C, Pandey BD (2010) Reductive leaching of valuable metals from Indian Ocean nodules by bacillus circulans. In: Proceedings of the XI international seminar on mineral processing technology, NML Jamshedpur, India

    Google Scholar 

  • Menezes-Filho JA et al (2009) High levels of hair manganese in children living in the vicinity of a ferro-manganese alloy production plant. Neurotoxicology 30(6):1207–1213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michalke B, Fernsebner K (2014) New insights into manganese toxicity and speciation. J Trace Elem Med Biol 28:106–116

    Article  CAS  PubMed  Google Scholar 

  • Mishra PP, Mohapatra BK, Mahanta K (2009) Upgradation of low-grade siliceous manganese ore from Bonai-Keonjhar Belt, Orissa, India. J Miner Mater Char Eng 8:47–56

    Google Scholar 

  • Nealson KH (2006) National Research Council (NRC). Recommended dietary allowances, 10th. Washington DC: National Academic Press, 1989. Manganese-oxidizing bacteria. Prokaryotes 5:222–231

    Article  Google Scholar 

  • Ogawa T, Bao DH, Katoh H et al (2002) A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. J Biol Chem 277:28981–28986

    Article  CAS  PubMed  Google Scholar 

  • Ogurtsova LV, Karavaiko GI, Avakyan ZA, Korenevsii AA (1989) Activity of various microorganisms in extracting elements from bauxite. Microbiology 58:774–780

    Google Scholar 

  • Ordonez-Librado JL, Anaya-Martínez V, Gutierrez-Valdez AL et al (2010) Manganese inhalation as a Parkinson disease model. Parkinsons Dis 2011:612989

    PubMed Central  PubMed  Google Scholar 

  • Ostwald J (1988) Mineralogy of the Groote Eylandt manganese oxides: a review. Ore Geol Rev 4:3–45

    Article  CAS  Google Scholar 

  • Pakarinen J (2006) Production of Manganese by Electrolysis. Thermo kinet pheno hydrome pro Espoo: TKK

    Google Scholar 

  • Pakarinen J (2011) Recovery and refining of manganese as by-product from hydrometallurgical processes. ISBN 978-952-265-135-8

    Google Scholar 

  • Perl DP, Olanow CW (2007) The neuropathology of manganese-induced Parkinsonism. J Neuropathol Exp Neurol 66:675–682

    Article  CAS  PubMed  Google Scholar 

  • Palmer FE, Staleyj T, Murray R, Counseltl GE, Adamsj B (1986) Identification of manganese oxidizing bacteria from desert varnish. Geomicrobiol J 4:343–360

    Article  CAS  Google Scholar 

  • Raynal M, Pruden A (2008) Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions. Biodegradation 19:269–282

    Article  CAS  PubMed  Google Scholar 

  • Riojas-Rodríguez H et al (2010) Intellectual function in Mexican children living in a mining area and environmentally exposed to manganese. Environ Health Perspect 118(10):1465–1470

    Article  PubMed Central  PubMed  Google Scholar 

  • Roth JA (2006) Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biol Res 39:45–57

    Article  CAS  PubMed  Google Scholar 

  • Roth JA (2009) Are there common biochemical and molecular mechanisms controlling manganism and Parkinsonism. Neuromolecular Med 11:281–296

    Article  CAS  PubMed  Google Scholar 

  • Sadek AH, Rauch R, Schultz PE (2003) Parkinsonism due to manganism in a Welder. Int J Toxicol 22:393–401

    Article  PubMed  Google Scholar 

  • Sankar MS, Vega MA, Defoe PP et al (2014) Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India. Sci Environ 488–489:570–579

    Google Scholar 

  • Santamaria AB (2008) Manganese exposure, essentiality & toxicity. Indian J Med Res 28:484–500

    Google Scholar 

  • Sayilgan E, Kukrer T, Civelekoglu G et al (2009) A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries. Hydrometallurgy 97:158–166

    Article  CAS  Google Scholar 

  • Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43:2–9

    Article  CAS  PubMed  Google Scholar 

  • Sriram K, Lina GX, Jeffersona AM (2012) Manganese accumulation in nail clippings as a biomarker of welding fume exposure and neurotoxicity. Toxicology 291:73–82

    Article  CAS  PubMed  Google Scholar 

  • Sukla LB, Panchanadikar VV, Kar RN (1993) Microbial leaching of lateritic nickel ore. World J Microbiol Biotechnol 9:255–257

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Li X, Li L, Mu G, Liu G (2006) The effect of 1-(2-pyridylazo)-2-naphthol on the corrosion of cold rolled steel in acid media: Part 2: Inhibitive action in 0.5 M sulfuric acid. Mater Chem Phys 97:301

    Article  CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK et al (2005) Geomicrobiology of manganese (II) oxidation. Trends Microbiol 13:421–428

    Article  CAS  PubMed  Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn (II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    Article  CAS  Google Scholar 

  • Troshanov EP (1969) Conditions affecting the reduction of iron and manganese by bacteria in the ore-bearing lakes of the Karelian Isthmus. Microbiology 38:528–535

    Google Scholar 

  • Trost WR (1958) The chemistry of manganese deposits. Mines Branch Res Rep R8. Department of Mines and Technical Surveys, Ottawa, Canada

    Google Scholar 

  • Venugopal R (2010) Solid waste processing for industrial utilization—a few case studies. In: Proceedings of the XI international seminar on mineral processing technology. http://eprints.nmlindia.org/2666

  • Viana GF, de Carvalho CF et al (2014) Noninvasive biomarkers of manganese exposure and neuropsychological effects in environmentally exposed adults in Brazil. Toxicol Lett 231(2):169–178, PMID: 24992226

    Article  CAS  PubMed  Google Scholar 

  • Valix M, Usai F, Malik R (2001) Fungal bioleaching of low grade laterite ores. Miner Eng 14(2):197–203

    Article  CAS  Google Scholar 

  • Wang W, Shao Z, Liu Y et al (2009) Removal of multi-heavy metals using biogenic manganese oxides generated by a deep sea sedimentary bacterium – Brachybacterium sp. Strain Mn32. Microbiology 155(6):1986–1996

    Article  Google Scholar 

  • Wei Z, Hiller S, Gadd GM (2012) Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environ Microbiol 14(7):1744–1753

    Article  CAS  PubMed  Google Scholar 

  • Xin B, Chen B, Duan N et al (2011) Extraction of manganese from electrolytic manganese residue by bioleaching. Bioresour Technol 102(2):1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Xin B, Jiang W, Li X et al (2012) Analysis of reasons for decline of bioleaching efficiency of spent Zn–Mn batteries at high pulp densities and exploration measure for improving performance. Bioresour Technol 112:186–192

    Article  CAS  PubMed  Google Scholar 

  • Yokel RA (2009) Manganese flux across the blood-brain barrier. Neuromolecular Med 11:297–310

    Article  CAS  PubMed  Google Scholar 

  • Youcai L, Qingquan L, Lifeng L et al (2014) Study on hydrometallurgical process and kinetics of manganese extraction from low-grade manganese carbonate ores. Int J Mining Sci Technol 24:567–571

    Article  Google Scholar 

  • Zhang JS (2007) Current challenge and chance in China’s Mn-industry. China Manganese Ind 1:6–9

    CAS  Google Scholar 

  • Zhang YB, You ZX, Li GH et al (2013) Manganese extraction by sulfur-based reduction roasting-acid leaching from low-grade manganese oxide ores. Hydrometallurgy 133(1):126–132

    Article  CAS  Google Scholar 

  • Zhu G, Zhao Y, Cheng Z (2010) Thermal analysis and kinetic modeling of manganese oxide ore reduction using biomass straw as reductant. Hydrometallurgy 105:96–102

    Article  Google Scholar 

  • Zoni S, Bonettia G, Lucchinia R (2012) Olfactory functions at the intersection between environmental exposure to manganese and Parkinsonism. J Trace Elem Med Biol 26:179–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the Department of Biotechnology (DBT), Government of India, for providing financial support [BT/PR7454/BCE/8/949/2012] for carrying out related studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, A.P., Ghosh, S., Mohanty, S., Sukla, L.B. (2015). Advances in Manganese Pollution and Its Bioremediation. In: Sukla, L., Pradhan, N., Panda, S., Mishra, B. (eds) Environmental Microbial Biotechnology. Soil Biology, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-19018-1_16

Download citation

Publish with us

Policies and ethics