Skip to main content

Bioconversion of Cotton Gin Waste to Bioethanol

  • Chapter
Book cover Environmental Microbial Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 45))

Abstract

Huge quantity of cotton gin waste is generated in cotton ginning industry. Due to stringent environment regulations, the disposal of this waste is one of the biggest problems faced by cotton industries all over the world. Cotton gin waste is a lignocellulosic biomass and thus can be utilized to produce bioethanol which is a promising alternative energy source. However, there are three major challenging steps involved in its conversion, namely, pretreatment (or delignification), hydrolysis, and fermentation. Biological conversion processes using engineered microbes are beneficial in tackling some of the problems involved in producing bioethanol from lignocellulosic waste. The present review explores the potential microbial strains for different conversion processes and methods for production of bioethanol from cotton gin waste in a cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abril D, Abril A (2009) Ethanol from lignocellulosic biomass. Cien Inv Agr 36(2):177–190

    Google Scholar 

  • Agblevor FA, Batz S, Trumbo J (2003) Composition and ethanol production potential of cotton gin residues. Appl Biochem Biotechnol 105–108:219–230

    PubMed  Google Scholar 

  • Agblevor FA et al (2006) Storage and characterization of cotton gin waste for ethanol production. Resour Conserv Recycl 46(2):198–216

    Google Scholar 

  • Agbor VB et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685

    CAS  PubMed  Google Scholar 

  • Aita GM, Kim M (2010) Pretreatment technologies for the conversion of lignocellulosic materials to bioethanol. In: Eggleston G (ed) Sustainability of the sugar and sugar–ethanol industries. American Chemical Society, Washington, DC

    Google Scholar 

  • Akyüz M, Yildiz A (2008) Evaluation of cellulosic wastes for the cultivation of Pleurotus eryngii (DC. ex Fr.) Quel. Afr J Biotechnol 7(10):1494–1499

    Google Scholar 

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    CAS  PubMed  Google Scholar 

  • Alvira P et al (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861

    CAS  PubMed  Google Scholar 

  • Aquino FL, Capareda SC, Parnell CBJ (2010) Elucidating the solid, liquid, and gaseous products from batch pyrolysis of cotton gin trash. Trans ASABE 53(3):651–658

    CAS  Google Scholar 

  • Ardica S, Calderaro E, Cappadona C (1985) Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis—II. Wood chips, paper, grain straw, hay, kapok. Radiat Phys Chem (1977) 26(6):701–704

    CAS  Google Scholar 

  • Arthe R et al (2008) Production of bio-ethanol from cellulosic cotton waste through microbial extracellular enzymatic hydrolysis and fermentation. Electron J Environ Agric Food Chem 7(6):2948–2958

    Google Scholar 

  • Badger P (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS, Alexandria, VA, pp 17–21

    Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manage 52(2):858–875

    CAS  Google Scholar 

  • Benjaphokee S et al (2012) Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. N Biotechnol 29(3):379–386

    CAS  PubMed  Google Scholar 

  • Berlin A et al (2006) Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. J Biotechnol 125(2):198–209

    CAS  PubMed  Google Scholar 

  • Brigham J, Adney W, Himmel ME (1996) Hemicellulases: diversity and applications. In: Wyman C (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 119–141

    Google Scholar 

  • Brown RC (2003) Biorenewable resources: engineering new products from agriculture. Wiley, New York

    Google Scholar 

  • Carere CR et al (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9(7):1342–1360

    CAS  PubMed Central  PubMed  Google Scholar 

  • CCI (2013) Current cotton scenario. The Cotton Corporation of India Ltd

    Google Scholar 

  • Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2:4767–4788

    CAS  Google Scholar 

  • das Neves M, Kimura T (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotechnol Mol Biol 1(1):1–14

    Google Scholar 

  • Das N, Mukherjee M (2007) Cultivation of Pleurotus ostreatus on weed plants. Bioresour Technol 98(14):2723–2726

    CAS  PubMed  Google Scholar 

  • Dehkhoda A (2008) Concentrating lignocellulosic hydrolysate by evaporation and its fermentation by repeated fed-batch using flocculating Saccharomyces cerevisiae. University College of Borås

    Google Scholar 

  • De Sousa MV, Monteiro SN, d’Almeida JRM (2004) Evaluation of pre-treatment, size and molding pressure on flexural mechanical behavior of chopped bagasse–polyester composites. Polym Test 23(3):253–258

    Google Scholar 

  • Devi MC, Kumar MS (2012) Production, optimization and partial purification of cellulase by Aspergillus niger fermented with paper and timber sawmill industrial wastes. J Microbiol Biotechnol Res 2(1):120–128

    Google Scholar 

  • Dogaris I, Mamma D, Kekos D (2013) Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations? Appl Microbiol Biotechnol 97(4):1457–1473

    CAS  PubMed  Google Scholar 

  • Domingues FC et al (2001) Production of cellulases in batch culture using a mutant strain of Trichoderma reesei growing on soluble carbon source. Biotechnol Lett 23(10):771–775

    CAS  Google Scholar 

  • Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology. McGraw-Hill, New York

    Google Scholar 

  • Duan C-J, Feng J-X (2010) Mining metagenomes for novel cellulase genes. Biotechnol Lett 32(12):1765–1775

    CAS  PubMed  Google Scholar 

  • Eggeman T, Elander RT (2005) Process and economic analysis of pretreatment technologies. Bioresour Technol 96(18):2019–2025

    CAS  PubMed  Google Scholar 

  • El-Zawawy WK et al (2011) Acid and enzyme hydrolysis to convert pretreated lignocellulosic materials into glucose for ethanol production. Carbohydr Polym 84(3):865–871

    CAS  Google Scholar 

  • Eriksson K-E (2000) Lignocellulose, lignin, ligninases. In: Schaechter M (ed) Encyclopedia of microbiology, vol 3. Academic, San Diego, CA, pp 39–48

    Google Scholar 

  • Fan L, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Springer, Berlin

    Google Scholar 

  • Farooqi R, Sam AG (2004) Ethanol as a transportation fuel: Canadian policies and challenges in the context of climate change. In Centre for Applied Business Research in Energy and the Environment. University of Alberta, Edmonton, AB

    Google Scholar 

  • Fengel D, Wegener G (1983) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fu N et al (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45(3):210–217

    CAS  Google Scholar 

  • Gaitán-Hernández R, Salmones D (2008) Obtaining and characterizing Pleurotus ostreatus strains for commercial cultivation under warm environmental conditions. Sci Hortic 118(2):106–110

    Google Scholar 

  • Galliano H et al (1991) Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol 13(6):478–482

    CAS  Google Scholar 

  • Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dyn Biochem Process Biotechnol Mol Biol 4(1):1–36

    Google Scholar 

  • Goldstein IS (1981) Organic chemicals from biomass. CRC, Boca Raton, FL

    Google Scholar 

  • Guerra A et al (2006) Toward a better understanding of the lignin isolation process from wood. J Agric Food Chem 54(16):5939–5947

    CAS  PubMed  Google Scholar 

  • Hamelinck CN, van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410

    CAS  Google Scholar 

  • Han M et al (2009) Bioethanol production from ammonia percolated wheat straw. Biotechnol Bioprocess Eng 14(5):606–611

    CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    CAS  PubMed  Google Scholar 

  • Hyeon J et al (2010) Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol Lett 310(1):39–47

    CAS  PubMed  Google Scholar 

  • Ibarra D et al (2006) Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase-mediator. Enzyme Microb Technol 39(6):1319–1327

    CAS  Google Scholar 

  • ICTSD (2013) Cotton: trends in global production, trade and policy. p 14

    Google Scholar 

  • Imamoglu E, Sukan FV (2014) The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 134:477–484

    CAS  Google Scholar 

  • Iñiguez-Covarrubias G, Lange SE, Rowell RM (2001) Utilization of byproducts from the tequila industry: part 1: agave bagasse as a raw material for animal feeding and fiberboard production. Bioresour Technol 77(1):25–32

    PubMed  Google Scholar 

  • Inoue H et al (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol Biofuels 1(1):2

    PubMed Central  PubMed  Google Scholar 

  • Isci A, Demirer GN (2007) Biogas production potential from cotton wastes. Renew Energy 32(5):750–757

    CAS  Google Scholar 

  • Jarboe LR et al (2007) Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol 108:237–261

    CAS  PubMed  Google Scholar 

  • Jeoh T (1998) Steam explosion pretreatment of cotton gin waste for fuel ethanol production. Virginia Polytechnic Institute and State University, Blacksburg, VA

    Google Scholar 

  • Jeoh T, Agblevor FA (2001) Characterization and fermentation of steam exploded cotton gin waste. Biomass Bioenergy 21(2):109–120

    CAS  Google Scholar 

  • Jingping G et al (2012) A genome shuffling-generated Saccharomyces cerevisiae isolate that ferments xylose and glucose to produce high levels of ethanol. J Ind Microbiol Biotechnol 39(5):777–787

    PubMed  Google Scholar 

  • Kalmış E, Sargın S (2004) Cultivation of two Pleurotus species on wheat straw substrates containing olive mill waste water. Int Biodeter Biodegr 53(1):43–47

    Google Scholar 

  • Kaparaju P et al (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100(9):2562–2568

    CAS  PubMed  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006a) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40(1):138–144

    CAS  Google Scholar 

  • Karimi K, Kheradmandinia S, Taherzadeh MJ (2006b) Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 30(3):247–253

    CAS  Google Scholar 

  • Karunanithy C, Muthukumarappan K, Julson JL (2008) Influence of high shear bioreactor parameters on carbohydrate release from different biomasses. In: 2008 Providence, Rhode Island, 29 June–2 July 2008. American Society of Agricultural and Biological Engineers, St. Joseph, MI

    Google Scholar 

  • Khokhar Z et al (2014) On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production. EXCLI J 13:82–97

    Google Scholar 

  • Kim SB et al (2011) Dilute acid pretreatment of barley straw and its saccharification and fermentation. Biotechnol Bioprocess Eng 16(4):725–732

    CAS  Google Scholar 

  • Kim I et al (2014) Effects of ammonium carbonate pretreatment on the enzymatic digestibility and structural features of rice straw. Bioresour Technol 166:353–357

    CAS  PubMed  Google Scholar 

  • Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Elsevier, New York

    Google Scholar 

  • Kodali B, Pogaku R (2006) Pretreatment studies of rice bran for the effective production of cellulose. Electron J Environ Agric Food Chem 5:1253–1264

    CAS  Google Scholar 

  • Koutrotsios G et al (2014) Bioconversion of lignocellulosic residues by Agrocybe cylindracea and Pleurotus ostreatus mushroom fungi—assessment of their effect on the final product and spent substrate properties. Food Chem 161:127–135

    CAS  PubMed  Google Scholar 

  • Kumar P et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    CAS  Google Scholar 

  • Kumari R, Pramanik K (2012) Improved bioethanol production using fusants of Saccharomyces cerevisiae and xylose-fermenting yeasts. Appl Biochem Biotechnol 167(4):873–884

    CAS  PubMed  Google Scholar 

  • Kunamneni A et al (2007) Fungal laccase—a versatile enzyme for biotechnological applications. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex Research Center, Badajoz, pp 233–245

    Google Scholar 

  • La Grange DC, den Haan R, van Zyl WH (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87(4):1195–1208

    CAS  PubMed  Google Scholar 

  • Lark N et al (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluyveromyces marxianus. Biomass Bioenergy 12(2):135–143

    CAS  Google Scholar 

  • Liang J et al (2014) Alcohol dehydrogenases from Kluyveromyces marxianus: heterologous expression in Escherichia coli and biochemical characterization. BMC Biotechnol 14(1):45

    PubMed Central  PubMed  Google Scholar 

  • Liu C-G et al (2014) Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover. Bioresour Technol 166:368–372

    CAS  PubMed  Google Scholar 

  • Lu Y et al (2012) Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J Ind Microbiol Biotechnol 39(1):73–80

    CAS  PubMed  Google Scholar 

  • Mahalakshmi M (2011) Bioconversion of cotton waste from textile mills to bioethanol by microbial saccharification and fermentation. Ann Biol Res 2(3):380–388

    CAS  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2004) Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 27(4):339–352

    Google Scholar 

  • Marcolongo L et al (2014) The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion. Fungal Genet Biol 72:162–167

    CAS  PubMed  Google Scholar 

  • Melamane X, Tandlich R, Burgess J (2007) Anaerobic digestion of fungally pre-treated wine distillery wastewater. Afr J Biotechnol 6(September):1990–1993

    CAS  Google Scholar 

  • Menon V, Prakash G, Prabhune A et al (2010a) Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresour Technol 101(14):5366–5373

    CAS  PubMed  Google Scholar 

  • Menon V, Prakash G, Rao M (2010b) Value added products from hemicellulose: biotechnological perspective. Global J Biochem 1(1):36–67

    CAS  Google Scholar 

  • Miranda R et al (2007) Pyrolysis of textile wastes. J Anal Appl Pyrolysis 80(2):489–495

    CAS  Google Scholar 

  • Morais MH et al (2000) Note. Production of shiitake mushroom (Lentinus edodes) on lignocellulosic residues/Nota. Cultivo del hongo shiitake (Lentinus edodes) en residuos lignocelulosicos. Food Sci Technol Int 6(2):123–128

    CAS  Google Scholar 

  • Moreno AD et al (2014) A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Critical review in biotechnology 0, 1–13

    Google Scholar 

  • Mosier N et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    CAS  PubMed  Google Scholar 

  • Mtui GYS (2009) Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol 8(8):1398–1415

    CAS  Google Scholar 

  • Mtui G, Nakamura Y (2005) Bioconversion of lignocellulosic waste from selected dumping sites in Dar es Salaam, Tanzania. Biodegradation 16(6):493–499

    CAS  PubMed  Google Scholar 

  • Okuda N et al (2007) Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11. J Biosci Bioeng 103(4):350–357

    CAS  PubMed  Google Scholar 

  • Ozçelik E, Pekşen A (2007) Hazelnut husk as a substrate for the cultivation of shiitake mushroom (Lentinula edodes). Bioresour Technol 98(14):2652–2658

    PubMed  Google Scholar 

  • Peker H et al (2007) Cultivation of Agaricus bisporus on wheat straw and waste tea leaves based compost formulas using wheat chaff as activator material. Afr J Biotechnol 6(4):400–409

    Google Scholar 

  • Peterson JD, Ingram LO (2008) Anaerobic respiration in engineered Escherichia coli with an internal electron acceptor to produce fuel ethanol. Ann N Y Acad Sci 1125:363–372

    CAS  PubMed  Google Scholar 

  • Philippoussis A, Zervakis G, Diamantopoulou P (2001) Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17(2):191–200

    CAS  Google Scholar 

  • Plácido J, Imam T, Capareda S (2013) Evaluation of ligninolytic enzymes, ultrasonication and liquid hot water as pretreatments for bioethanol production from cotton gin trash. Bioresour Technol 139:203–208

    PubMed  Google Scholar 

  • Qi BC et al (2005) Acidogenic fermentation of lignocellulosic substrate with activated sludge. Chem Eng Commun 192(9):1221–1242

    CAS  Google Scholar 

  • Rabinovich ML, Melnik MS, Bolobova AV (2002) Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases (Review). Appl Biochem Microbiol 38(4):305–322

    CAS  Google Scholar 

  • Rani P, Kalyani N, Prathiba K (2008) Evaluation of lignocellulosic wastes for production of edible mushrooms. Appl Biochem Biotechnol 151(2-3):151–159

    CAS  PubMed  Google Scholar 

  • Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4(2):157–164

    CAS  PubMed  Google Scholar 

  • Safartalab K, Dadashian F, Vahabzadeh F (2014) Fed batch enzymatic hydrolysis of cotton and viscose waste fibers to produce ethanol. Univ J Chem 2(1):11–15

    CAS  Google Scholar 

  • Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    PubMed  Google Scholar 

  • Saritha M, Arora A, Lata (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Ind J Microbiol 52(2):122–130

    CAS  Google Scholar 

  • Sarks C et al (2014) Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle. Biotechnol Biofuels 7(1):73

    PubMed Central  PubMed  Google Scholar 

  • Sharma-Shivappa R, Chen Y (2008) Conversion of cotton wastes to bioenergy and value-added products. Trans ASABE 51(6):2239–2246

    Google Scholar 

  • Shen J, Agblevor FA (2008) Optimization of enzyme loading and hydrolytic time in the hydrolysis of mixtures of cotton gin waste and recycled paper sludge for the maximum profit rate. Biochem Eng J 41(3):241–250

    CAS  Google Scholar 

  • Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99(14):6556–6564

    CAS  PubMed  Google Scholar 

  • Silva EM, Machuca A, Milagres AMF (2005) Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett Appl Microbiol 40(4):283–288

    CAS  PubMed  Google Scholar 

  • Silverstein RA et al (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98(16):3000–3011

    CAS  PubMed  Google Scholar 

  • Sindhu R et al (2011) Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol 102(23):10915–10921

    CAS  PubMed  Google Scholar 

  • Sindhu R et al (2012) Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J Microbiol Biotechnol 28(2):473–483

    CAS  PubMed  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications. Gulf, London

    Google Scholar 

  • Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M (2013) Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Biotechnol Biofuels 6(1):180

    PubMed Central  PubMed  Google Scholar 

  • Sun Y, Cheng J, Westerman PW (2002) Enzymatic hydrolysis of rye straw and bermudagrass for ethanol production. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26(10):845–848

    CAS  PubMed  Google Scholar 

  • Szengyel Z (2000) Ethanol from wood—cellulase enzyme production. Lund University

    Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472–499

    CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taherzadeh M, Niklasson C (2004) Ethanol from lignocellulosic materials: pretreatment, acid and enzymatic hydrolyses, and fermentation. In: Saha B, Hayashi K (eds) Lignocellulose biodegradation. ACS Division of Cellulose and Renewable Materials, American Chemical Society, Washington, DC, pp 49–68

    Google Scholar 

  • Terashima N et al (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG et al (eds) Forage cell wall structure and digestibility. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp 247–270

    Google Scholar 

  • Tian X-F et al (2011) Pretreatment of microcrystalline cellulose in organic electrolyte solutions for enzymatic hydrolysis. Biotechnol Biofuels 4(1):53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomas-Pejo E (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67(November):874–884

    CAS  Google Scholar 

  • Tomás-Pejó E, Oliva JM, Ballesteros M (2008) Realistic approach for full-scale bioethanol production from lignocellulose: a review. J Sci Ind Res 67(11):874–884

    Google Scholar 

  • Travaini R et al (2013) Sugarcane bagasse ozonolysis pretreatment: effect on enzymatic digestibility and inhibitory compound formation. Bioresour Technol 133:332–339

    CAS  PubMed  Google Scholar 

  • Wang Z et al (1990) Cloning and expression of a lignin peroxidase gene from Streptomyces viridosporus in Streptomyces lividans. J Biotechnol 13(2–3):131–144

    CAS  PubMed  Google Scholar 

  • White DH, Coates WE, Wolf D (1996) Conversion of cotton plant and cotton gin residues to fuels by the extruder-feeder liquefaction process. Bioresour Technol 56(1):117–123

    CAS  Google Scholar 

  • Wood TM et al (1986) A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 34(1):37–40

    CAS  Google Scholar 

  • Wyman C (1996) Handbook on bioethanol: production and utilization. CRC, New York

    Google Scholar 

  • Wyman CE et al (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    CAS  PubMed  Google Scholar 

  • Yang B, Lu Y (2007) The promise of cellulosic ethanol production in China. J Chem Technol Biotechnol 10(August 2006):6–10

    Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefining 2(1):26–40

    CAS  Google Scholar 

  • Yang W, Guo F, Wan Z (2013) Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi J Biol Sci 20(4):333–338

    PubMed Central  PubMed  Google Scholar 

  • Yildiz S et al (2002) Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem 38(3):301–306

    CAS  Google Scholar 

  • Zabaniotou A, Andreou K (2010) Development of alternative energy sources for GHG emissions reduction in the textile industry by energy recovery from cotton ginning waste. J Cleaner Prod 18(8):784–790

    CAS  Google Scholar 

  • Zhang H et al (2014a) Structure and enzymatic accessibility of leaf and stem from wheat straw before and after hydrothermal pretreatment. Biotechnol Biofuels 7:74

    PubMed Central  PubMed  Google Scholar 

  • Zhang L et al (2014b) Enhanced fermentability of poplar by combination of alkaline peroxide pretreatment and semi-simultaneous saccharification and fermentation. Bioresour Technol 164:292–298

    CAS  PubMed  Google Scholar 

  • Zhao X, Wu R, Liu D (2011) Production of pulp, ethanol and lignin from sugarcane bagasse by alkali-peracetic acid delignification. Biomass Bioenergy 35(7):2874–2882

    CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sahu, S., Pramanik, K. (2015). Bioconversion of Cotton Gin Waste to Bioethanol. In: Sukla, L., Pradhan, N., Panda, S., Mishra, B. (eds) Environmental Microbial Biotechnology. Soil Biology, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-19018-1_14

Download citation

Publish with us

Policies and ethics