Skip to main content

Superradiance in Black Hole Physics

  • Chapter
Book cover Superradiance

Part of the book series: Lecture Notes in Physics ((LNP,volume 906))

Abstract

As discussed in the previous section, superradiance requires dissipation. The latter can emerge in various forms, e.g. viscosity, friction, turbulence, radiative cooling, etc. All these forms of dissipation are associated with some medium or some matter field that provides the arena for superradiance. It is thus truly remarkable that—when spacetime is curved—superradiance can also occur in vacuum, even at the classical level. In this section we discuss in detail BH superradiance, which is the main topic of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We also require the spacetime to be invariant under the “circularity condition”, t → −t and φ → −φ, which implies \(g_{t\vartheta } = g_{t\varphi } = g_{r\vartheta } = g_{r\varphi } = 0\) [6]. While the circularity condition follows from Einstein and Maxwell equations in electrovacuum, it might not hold true in modified gravities or for exotic matter fields.

  2. 2.

    This possibility was at some stage considered of potential interest for the physics of jets emitted by quasars.

  3. 3.

    Interestingly, in the case of a naked singularity large-curvature regions become accessible to outside observers and g tt can be arbitrarily large. This suggests that the Penrose effects around spinning naked singularities can be very efficient. It is also possible that rotating wormholes are prone to efficient Penrose-like processes, although to the best of our knowledge a detailed investigation has not been performed.

  4. 4.

    As we shall discuss, this condition does not hold in various cases, for example for electromagnetic and gravitational perturbations of a Kerr BH, whereas it holds for scalar perturbations of spinning and charged BHs. When such condition does not hold, a more sophisticated analysis is needed, as discussed below.

  5. 5.

    Note that a planar tensor wave along γ = 0 in Cartesian coordinates will have a sin2φ modulation when transformed to spherical coordinates, in which the multipolar decomposition is performed. This explains why Eq. (3.112) depends only on | m | = 2 and on a sum over all multipolar indices l ≤ 2. Likewise, an EM wave along γ = 0 would be modulated by sinφ and its cross-section would only depend on | m | = 1, whereas the cross-section (3.110) for a scalar wave along γ = 0 only depends on m = 0.

  6. 6.

    This example was suggested to us by Luis Lehner and Frans Pretorius.

  7. 7.

    We follow the terminology of Dias, Emparan and Maccarrone who, in a completely different context, arrived at conclusions very similar to ours, see Sect. 2.4 in [91].

  8. 8.

    This simple proof was suggested to us by Roberto Emparan.

  9. 9.

    There are no gravitational degrees of freedom in less than four dimensions, and a BH solution only exists for a negative cosmological constant, the so-called BTZ solution [92]. This solution has some similarities with the Kerr-AdS metric and, as we shall discuss in Sect. 3.10, superradiance does not occur when reflective boundary conditions at infinity are imposed [93].

  10. 10.

    It would be interesting to understand the large amplification of the superradiance energy in terms of violation of some energy condition due to the effective coupling that appears in scalar-tensor theories.

  11. 11.

    The geometry used in the original Kerr/CFT duality is the so-called near-horizon extreme Kerr “NHEK” geometry found by Bardeen and Horowitz [154] which is not asymptotically flat but resembles AdS3. That this geometry could have a dual CFT description was first pointed out in [154].

  12. 12.

    The only exception to this rule concerns BHs surrounded by matter coupled to scalar fields, where the amplification factors can become unbounded (see Sect. 3.12.1). Because the laws of BH mechanics will be different, these fall outside the scope of this discussion.

  13. 13.

    We thank Shahar Hod for drawing our attention to this point.

References

  1. K.S. Thorne, R. Price, D. Macdonald, Black Holes: The Membrane Paradigm (Yale University Press, New Haven, 1986)

    Google Scholar 

  2. E.T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash et al., Metric of a rotating, charged mass. J. Math. Phys. 6, 918–919 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Robinson, The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  4. D.L. Wiltshire, M. Visser, S.M. Scott, The Kerr Spacetime: Rotating Black Holes in General Relativity (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  5. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)

  6. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, New York, 1983)

    MATH  Google Scholar 

  7. V. Cardoso, P. Pani, Tidal acceleration of black holes and superradiance. Classical Quantum Gravity 30, 045011 (2013). arXiv:1205.3184 [gr-qc]

  8. J. Bekenstein, Extraction of energy and charge from a black hole. Phys. Rev. D7, 949–953 (1973)

    MathSciNet  ADS  Google Scholar 

  9. R.M. Wald, The thermodynamics of black holes. Living Rev. Relativ. 4, 6 (2001). arXiv:gr-qc/9912119 [gr-qc]

  10. W. Unruh, Separability of the Neutrino equations in a Kerr background. Phys. Rev. Lett. 31, 1265–1267 (1973)

    Article  ADS  Google Scholar 

  11. R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D48, 3427–3431 (1993). arXiv:gr-qc/9307038 [gr-qc]

  12. V. Iyer, R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). arXiv:gr-qc/9403028 [gr-qc]

  13. T. Tachizawa, K.-I. Maeda, Superradiance in the Kerr-de Sitter space-time. Phys. Lett. A 172, 325–330 (1993)

    Article  ADS  MATH  Google Scholar 

  14. http://www.pas.rochester.edu/~dmw/ast102/

  15. R. Penrose, Nuovo Cimento. J. Serie 1, 252 (1969)

    Google Scholar 

  16. G. Contopoulos, Orbits through the ergosphere of a kerr black hole. Gen. Relativ. Gravit. 16(1), 43–70 (1984). http://dx.doi.org/10.1007/BF00764017

  17. R.M. Wald, Energy limits on the Penrose process. Astrophys. J. 191, 231 (1974)

  18. S. Wagh, S. Dhurandhar, N. Dadhich, Revival of penrose process for astrophysical applications. Astrophys. J. 290(12), 1018 (1985)

  19. S.M. Wagh, S.V. Dhurandhar, N. Dadhich, Revival of the Penrose process for astrophysical applications: Erratum. Astrophys. J. 301, 1018 (1986)

    Article  ADS  Google Scholar 

  20. M. Richartz, S. Weinfurtner, A. Penner, W. Unruh, General universal superradiant scattering. Phys. Rev. D80, 124016 (2009). arXiv:0909.2317 [gr-qc]

  21. E. Teo, Rotating traversable wormholes. Phys. Rev. D58, 024014 (1998). arXiv:gr-qc/9803098 [gr-qc]

  22. A. Abdujabbarov, B. Ahmedov, B. Ahmedov, Energy extraction and particle acceleration around rotating black hole in Horava-Lifshitz gravity. Phys. Rev. D84, 044044 (2011). arXiv:1107.5389 [astro-ph.SR]

  23. A. Abdujabbarov, B. Ahmedov, S. Shaymatov, A. Rakhmatov, Penrose process in Kerr-Taub-NUT spacetime. Astrophys. Space Sci. 334, 237–241 (2011). arXiv:1105.1910 [astro-ph.SR]

  24. S. Chen, J. Jing, Gravitational field of a slowly rotating black hole with a phantom global monopole. Classical Quantum Gravity 30, 175012 (2013). arXiv:1301.1440 [gr-qc]

  25. C. Ganguly, S. SenGupta, Penrose process in charged axion-dilaton coupled black hole. arXiv:1401.6826 [hep-th]

  26. C. Liu, S. Chen, J. Jing, Rotating non-Kerr black hole and energy extraction. Astrophys. J. 751, 148 (2012). arXiv:1207.0993 [gr-qc]

  27. M. Nozawa, K.-I. Maeda, Energy extraction from higher dimensional black holes and black rings. Phys. Rev. D71, 084028 (2005). arXiv:hep-th/0502166 [hep-th]

  28. K. Prabhu, N. Dadhich, Energetics of a rotating charged black hole in 5-dimensional gauged supergravity. Phys. Rev. D81, 024011 (2010). arXiv:0902.3079 [hep-th]

  29. S.G. Ghosh, P. Sheoran, Higher dimensional non-Kerr black hole and energy extraction. Phys. Rev. D89, 024023 (2014). arXiv:1309.5519 [gr-qc]

  30. S. Parthasarathy, S.M. Wagh, S.V. Dhurandhar, N. Dadhich, High efficiency of the Penrose process of energy extraction from rotating black holes immersed in electromagnetic fields. Astrophys. J. 307, 38–46 (1986)

    Article  ADS  Google Scholar 

  31. S.M. Wagh, N. Dadhich, The energetics of black holes in electromagnetic fields by the Penrose process. Phys. Rep. 183(4), 137–192 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Piran, J. Shaham, Upper bounds on collisional Penrose processes near rotating black hole horizons. Phys. Rev. D16, 1615–1635 (1977)

    ADS  Google Scholar 

  33. T. Harada, H. Nemoto, U. Miyamoto, Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole. Phys. Rev. D86, 024027 (2012). arXiv:1205.7088 [gr-qc]

  34. M. Bejger, T. Piran, M. Abramowicz, F. Hakanson, Collisional Penrose process near the horizon of extreme Kerr black holes. Phys. Rev. Lett. 109, 121101 (2012). arXiv:1205.4350 [astro-ph.HE]

  35. O.B. Zaslavskii, On energetics of particle collisions near black holes: BSW effect versus Penrose process. Phys. Rev. D86, 084030 (2012). doi: Phys. Rev. D70, 124006. arXiv:1205.4410 [gr-qc]

  36. J.D. Schnittman, A revised upper limit to energy extraction from a Kerr black hole. arXiv:1410.6446 [astro-ph.HE]

  37. E. Berti, R. Brito, V. Cardoso, Ultra-high-energy debris from the collisional Penrose process. arXiv:1410.8534 [gr-qc]

  38. T. Piran, J. Shaham, J. Katz, High efficiency of the Penrose mechanism for particle collisions. Astrophys. J. 196, L107 (1975)

    Article  ADS  Google Scholar 

  39. E. Leiderschneider, T. Piran, Super-Penrose collisions are inefficient—a comment on: black hole fireworks: ultra-high-energy debris from super-Penrose collisions. arXiv:1501.01984 [gr-qc]

  40. S. Teukolsky, W. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation. Astrophys. J. 193, 443–461 (1974)

  41. Y.B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz. 14, 270 (1971) [JETP Lett. 14, 180 (1971)]

    Google Scholar 

  42. Y.B. Zel’dovich, Zh. Eksp. Teor. Fiz 62, 2076 (1972) [Sov. Phys. JETP 35, 1085 (1972)]

    Google Scholar 

  43. L. Di Menza, J.-P. Nicolas, Superradiance on the Reissner-Nordstrom metric. ArXiv e-prints (2014). arXiv:1411.3988 [math-ph]

  44. M. Richartz, A. Saa, Challenging the weak cosmic censorship conjecture with charged quantum particles. Phys. Rev. D84, 104021 (2011). arXiv:1109.3364 [gr-qc]

  45. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D78, 065034 (2008). arXiv:0801.2977 [hep-th]

  46. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

  47. E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  48. S.A. Teukolsky, Rotating black holes—separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114–1118 (1972)

    Article  ADS  Google Scholar 

  49. S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations. Astrophys. J. 185, 635–647 (1973)

  50. W.H. Press, S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the Kerr metric. Astrophys. J. 185, 649–674 (1973)

  51. B. Carter, Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  52. B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations. Commun. Math. Phys. 10, 280 (1968)

    MATH  Google Scholar 

  53. D. Brill, P. Chrzanowski, C.M. Pereira, E. Fackerell, J. Ipser, Solution of the scalar wave equation in a kerr background by separation of variables. Phys. Rev. D5, 1913–1915 (1972)

  54. S.A. Teukolsky, The Kerr metric. arXiv:1410.2130 [gr-qc]

  55. J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich, E.C.G. Sudarshan, Spin s spherical harmonics and . J. Math. Phys. 8(11), 2155–2161 (1967). http://scitation.aip.org/content/aip/journal/jmp/8/11/10.1063/1.1705135

  56. E. Berti, V. Cardoso, M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D73, 024013 (2006). arXiv:gr-qc/0511111 [gr-qc]

  57. A.A. Starobinskij, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zh. Eksp. Teor. Fiz. 65, 3–11 (1973)

    ADS  Google Scholar 

  58. A.A. Starobinskij, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Sov. Phys. JETP 38, 1–5 (1973)

    ADS  Google Scholar 

  59. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Classical Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

  60. C.W. Misner, K. Thorne, J. Wheeler, Gravitation (Freeman, San Francisco, 1974)

    Google Scholar 

  61. S. Hawking, J. Hartle, Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283–290 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  62. S. Chandrasekhar, The solution of Dirac’s equation in Kerr geometry. R. Soc. Lond. Proc. Ser. A 349, 571–575 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  63. D.N. Page, Dirac equation around a charged, rotating black hole. Phys. Rev. D 14, 1509–1510 (1976)

    Article  ADS  Google Scholar 

  64. C.H. Lee, Massive spin-1/2 wave around a Kerr-Newman black hole. Phys. Lett. B 68, 152–156 (1977)

    Article  ADS  Google Scholar 

  65. B.R. Iyer, A. Kumar, Note on the absence of massive fermion superradiance from a Kerr black hole. Phys. Rev. 18, 4799–4801 (1978)

    ADS  Google Scholar 

  66. M. Martellini, A. Treves, Absence of superradiance of a Dirac field in a Kerr background. Phys. Rev. D15, 3060–3061 (1977)

    ADS  Google Scholar 

  67. S. Hawking, Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344–1346 (1971)

    Article  ADS  Google Scholar 

  68. A. Starobinski, Amplification of waves during reflection from a rotating black hole. Zh. Eksp. Teor. Fiz. 64, 48 (1973) [Sov. Phys. JETP 37, 28 (1973)]

    Google Scholar 

  69. A.A. Starobinski, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zh. Eksp. Teor. Fiz. 65, 3 (1973) [Sov. Phys. JETP 38, 1 (1973)]

    Google Scholar 

  70. http://blackholes.ist.utl.pt/?page=Files

  71. V. Cardoso, A Note on the resonant frequencies of rapidly rotating black holes. Phys. Rev. D70, 127502 (2004). arXiv:gr-qc/0411048 [gr-qc]

  72. S.L. Detweiler, Black holes and gravitational waves. III. The resonant frequencies of rotating holes. Astrophys. J. 239, 292–295 (1980)

  73. N. Andersson, K. Glampedakis, A Superradiance resonance cavity outside rapidly rotating black holes. Phys. Rev. Lett. 84, 4537–4540 (2000). arXiv:gr-qc/9909050 [gr-qc]

  74. H. Yang, F. Zhang, A. Zimmerman, D.A. Nichols, E. Berti et al., Branching of quasinormal modes for nearly extremal Kerr black holes. Phys. Rev. D87, 041502 (2013). arXiv:1212.3271 [gr-qc]

  75. S. Hod, Stationary resonances of rapidly-rotating Kerr black holes. Eur. Phys. J. C73, 2378 (2013). arXiv:1311.5298 [gr-qc]

  76. S. Hod, Stationary scalar clouds around rotating black holes. Phys. Rev. D86, 104026 (2012). arXiv:1211.3202 [gr-qc]

  77. S. Hod, Resonance spectrum of near-extremal Kerr black holes in the eikonal limit. Phys. Lett. B715, 348–351 (2012). arXiv:1207.5282 [gr-qc]

  78. S. Hod, Quasinormal resonances of a charged scalar field in a charged Reissner-Nordstroem black-hole spacetime: a WKB analysis. Phys. Lett. B710, 349–351 (2012). arXiv:1205.5087 [gr-qc]

  79. S. Hod, Algebraically special resonances of the Kerr-black-hole-mirror bomb. Phys. Rev. D88(12), 124007 (2013). arXiv:1405.1045 [gr-qc]

  80. W. Unruh, Absorption cross-section of small black holes. Phys. Rev. D14, 3251–3259 (1976)

    ADS  Google Scholar 

  81. C.F. Macedo, L.C. Leite, E.S. Oliveira, S.R. Dolan, L.C. Crispino, Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D88(6), 064033 (2013). arXiv:1308.0018 [gr-qc]

  82. P. Chrzanowski, R. Matzner, V. Sandberg, M. Ryan, Zero mass plane waves in nonzero gravitational backgrounds. Phys. Rev. D14, 317–326 (1976)

    MathSciNet  ADS  Google Scholar 

  83. R. Matzner, M. Ryan, Low frequency limit of gravitational scattering. Phys. Rev. D16, 1636–1642 (1977)

    MathSciNet  ADS  Google Scholar 

  84. R.A. Matzner, M.P. Ryan, Jr., Scattering of gravitational radiation from vacuum black holes. Astrophys. J. 36, 451–481 (1978)

    Article  ADS  Google Scholar 

  85. J.A.H. Futterman, F.A. Handler, R.A. Matzner, Scattering from Black Holes (Cambridge University Press, Cambridge, 1988)

    Book  MATH  Google Scholar 

  86. S.R. Dolan, Scattering and absorption of gravitational plane waves by rotating black holes. Classical Quantum Gravity 25, 235002 (2008). arXiv:0801.3805 [gr-qc]

  87. J.G. Rosa, Testing black hole superradiance with pulsar companions. arXiv:1501.07605 [gr-qc]

  88. E.S. Oliveira, S.R. Dolan, L.C. Crispino, Absorption of planar waves in a draining bathtub. Phys. Rev. D81, 124013 (2010)

  89. W.E. East, F.M. Ramazanoglu, F. Pretorius, Black hole superradiance in dynamical spacetime. Phys. Rev. D89, 061503 (2014). arXiv:1312.4529 [gr-qc]

  90. J. Hovdebo, R.C. Myers, Black rings, boosted strings and Gregory-Laflamme. Phys. Rev. D73, 084013 (2006). arXiv:hep-th/0601079 [hep-th]

  91. O.J. Dias, R. Emparan, A. Maccarrone, Microscopic theory of black hole superradiance. Phys. Rev. D77, 064018 (2008). arXiv:0712.0791 [hep-th]

  92. M. Banados, C. Teitelboim, J. Zanelli, The black hole in three-dimensional space-time. Phys. Rev. Lett. 69, 1849–1851 (1992). arXiv:hep-th/9204099 [hep-th]

  93. L. Ortiz, No superradiance for the scalar field in the BTZ black hole with reflexive boundary conditions. Phys. Rev. D86, 047703 (2012). arXiv:1110.2555 [hep-th]

  94. R. Emparan, H.S. Reall, Black holes in higher dimensions. Living Rev. Relativ. 11, 6 (2008). arXiv:0801.3471 [hep-th]

  95. S. Hawking, Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  96. S. Hollands, A. Ishibashi, R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271, 699–722 (2007). arXiv:gr-qc/0605106 [gr-qc]

  97. V.P. Frolov, D. Stojkovic, Quantum radiation from a five-dimensional rotating black hole. Phys. Rev. D67, 084004 (2003). arXiv:gr-qc/0211055 [gr-qc]

  98. E. Jung, S. Kim, D. Park, Condition for superradiance in higher-dimensional rotating black holes. Phys. Lett. B615, 273–276 (2005). arXiv:hep-th/0503163 [hep-th]

  99. E. Jung, S. Kim, D. Park, Condition for the superradiance modes in higher-dimensional rotating black holes with multiple angular momentum parameters. Phys. Lett. B619, 347–351 (2005). arXiv:hep-th/0504139 [hep-th]

  100. H. Kodama, Superradiance and instability of black holes. Prog. Theor. Phys. Suppl. 172, 11–20 (2008). arXiv:0711.4184 [hep-th]

  101. R. Brito, Dynamics around black holes: radiation emission and tidal effects. arXiv:1211.1679 [gr-qc]

  102. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Scalar emission in the bulk in a rotating black hole background. Phys. Lett. B656, 102–111 (2007). arXiv:0709.0241 [hep-th]

  103. M. Casals, S. Dolan, P. Kanti, E. Winstanley, Bulk emission of scalars by a rotating black hole. J. High Energy Phys. 0806, 071 (2008). arXiv:0801.4910 [hep-th]

  104. E. Jung, D. Park, Bulk versus brane in the absorption and emission: 5-D rotating black hole case. Nucl. Phys. B731, 171–187 (2005). arXiv:hep-th/0506204 [hep-th]

  105. C. Harris, P. Kanti, Hawking radiation from a (4+n)-dimensional rotating black hole. Phys. Lett. B633, 106–110 (2006). arXiv:hep-th/0503010 [hep-th]

  106. D. Ida, K.-Y. Oda, S.C. Park, Rotating black holes at future colliders. II. Anisotropic scalar field emission. Phys. Rev. D71, 124039 (2005). arXiv:hep-th/0503052 [hep-th]

  107. S. Creek, O. Efthimiou, P. Kanti, K. Tamvakis, Greybody factors for brane scalar fields in a rotating black-hole background. Phys. Rev. D75, 084043 (2007). arXiv:hep-th/0701288 [hep-th]

  108. M. Casals, P. Kanti, E. Winstanley, Brane decay of a (4+n)-dimensional rotating black hole. II. Spin-1 particles. J. High Energy Phys. 0602, 051 (2006). arXiv:hep-th/0511163 [hep-th]

  109. R. Brito, V. Cardoso, P. Pani, Tidal effects around higher-dimensional black holes. Phys. Rev. D86, 024032 (2012). arXiv:1207.0504 [gr-qc]

  110. E. Poisson, M. Sasaki, Gravitational radiation from a particle in circular orbit around a black hole. 5: black hole absorption and tail corrections. Phys. Rev. D51, 5753–5767 (1995). arXiv:gr-qc/9412027 [gr-qc]

  111. E. Berti, V. Cardoso, J.P. Lemos, Quasinormal modes and classical wave propagation in analogue black holes. Phys. Rev. D70, 124006 (2004). arXiv:gr-qc/0408099 [gr-qc]

  112. C. Barcelo, S. Liberati, M. Visser, Analogue gravity. Living Rev. Relativ. 8, 12 (2005). arXiv:gr-qc/0505065 [gr-qc]

  113. C. Cherubini, F. Federici, S. Succi, M. Tosi, Excised acoustic black holes: the scattering problem in the time domain. Phys. Rev. D72, 084016 (2005). arXiv:gr-qc/0504048 [gr-qc]

  114. S. Lepe, J. Saavedra, Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes. Phys. Lett. B617 (2005) 174–181. arXiv:gr-qc/0410074 [gr-qc]

  115. K. Choy, T. Kruk, M. Carrington, T. Fugleberg, J. Zahn et al., Energy flow in acoustic black holes. Phys. Rev. D73, 104011 (2006). arXiv:gr-qc/0505163 [gr-qc]

  116. M. Richartz, A. Prain, S. Liberati, S. Weinfurtner, Rotating black holes in a draining bathtub: superradiant scattering of gravity waves. arXiv:1411.1662 [gr-qc]

  117. F. Federici, C. Cherubini, S. Succi, M. Tosi, Superradiance from BEC vortices: a numerical study. Phys. Rev. A73, 033604 (2006). arXiv:gr-qc/0503089 [gr-qc]

  118. N. Ghazanfari, O.E. Mustecaplioglu, Acoustic superradiance from an optical-superradiance-induced vortex in a Bose-Einstein condensate. Phys. Rev. A89, 043619 (2014). arXiv:1401.1077 [cond-mat.quant-gas]

  119. F. Kuhnel, C. Rampf, Astrophysical Bose-Einstein condensates and superradiance. Phys. Rev. D90, 103526 (2014). arXiv:1408.0790 [gr-qc]

  120. V. Georgescu, C. Gérard, D. Häfner, Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric. arXiv:1405.5304 [math.AP]

  121. Z. Zhu, S.-J. Zhang, C. Pellicer, B. Wang, E. Abdalla, Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation. Phys. Rev. D90(4), 044042 (2014). arXiv:1405.4931 [hep-th]

  122. R. Konoplya, A. Zhidenko, Charged scalar field instability between the event and cosmological horizons. Phys. Rev. D90, 064048 (2014). arXiv:1406.0019 [hep-th]

  123. A. Ishibashi, R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time. Classical Quantum Gravity 21, 2981–3014 (2004). arXiv:hep-th/0402184 [hep-th]

  124. E. Winstanley, On classical superradiance in Kerr-Newman - anti-de Sitter black holes. Phys. Rev. D64, 104010 (2001). arXiv:gr-qc/0106032 [gr-qc]

  125. O.J. Dias, J.E. Santos, Boundary conditions for Kerr-AdS perturbations. J. High Energy Phys. 1310, 156 (2013). arXiv:1302.1580 [hep-th]

  126. V. Cardoso, S.J. Dias, G.S. Hartnett, L. Lehner, J.E. Santos, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS. J. High Energy Phys. 1404, 183 (2014). arXiv:1312.5323 [hep-th]

  127. R. Jorge, E.S. de Oliveira, J.V. Rocha, Greybody factors for rotating black holes in higher dimensions. arXiv:1410.4590 [gr-qc]

  128. M. Richartz, A. Saa, Superradiance without event horizons in general relativity. Phys. Rev. D88, 044008 (2013). arXiv:1306.3137 [gr-qc]

  129. V. Cardoso, R. Brito, J.L. Rosa, Superradiance in stars (2015). arXiv:1505.05509 [gr-qc]

  130. K. Glampedakis, S.J. Kapadia, D. Kennefick, Superradiance-tidal friction correspondence. Phys. Rev. D89(2), 024007 (2014). arXiv:1312.1912 [gr-qc]

  131. Y.B. Zel’dovich, J. Exp. Theor. Phys. Lett. 14, 180 (1971)

    Google Scholar 

  132. N. Yunes and X. Siemens, Gravitational-wave tests of general relativity with ground-based detectors and pulsar timing-arrays. Living Rev. Relativ. 16, 9 (2013). arXiv:1304.3473 [gr-qc]

  133. E. Barausse, V. Cardoso, P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D89, 104059 (2014). arXiv:1404.7149 [gr-qc]

  134. E. Berti, E. Barausse, V. Cardoso, L. Gualtieri, P. Pani et al., Testing general relativity with present and future astrophysical observations. arXiv:1501.07274 [gr-qc]

  135. P. Pani, C.F. Macedo, L.C. Crispino, V. Cardoso, Slowly rotating black holes in alternative theories of gravity. Phys. Rev. D84, 087501 (2011). arXiv:1109.3996 [gr-qc]

  136. B. Kleihaus, J. Kunz, E. Radu, Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory. Phys. Rev. Lett. 106, 151104 (2011). arXiv:1101.2868 [gr-qc]

  137. D. Psaltis, D. Perrodin, K.R. Dienes, I. Mocioiu, Kerr black holes are not unique to general relativity. Phys. Rev. Lett. 100, 091101 (2008). arXiv:0710.4564 [astro-ph]

  138. Y.S. Myung, Instability of rotating black hole in a limited form of f(R) gravity. Phys. Rev. D84, 024048 (2011). arXiv:1104.3180 [gr-qc]

  139. Y.S. Myung, Instability of a Kerr black hole in f(R) gravity. Phys. Rev. D88(10), 104017 (2013). arXiv:1309.3346 [gr-qc]

  140. T. Johannsen, D. Psaltis, A metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem. Phys. Rev. D83 124015, (2011). arXiv:1105.3191 [gr-qc]

  141. V. Cardoso, P. Pani, J. Rico, On generic parametrizations of spinning black-hole geometries. Phys. Rev. D89, 064007 (2014). arXiv:1401.0528 [gr-qc]

  142. D. Bini, C. Cherubini, R.T. Jantzen, B. Mashhoon, Massless field perturbations and gravitomagnetism in the Kerr-Taub-NUT space-time. Phys. Rev. D67, 084013 (2003). arXiv:gr-qc/0301080 [gr-qc]

  143. D. Bini, C. Cherubini, A. Geralico, Massless field perturbations of the spinning C metric. J. Math. Phys. 49, 062502 (2008). arXiv:1408.4593 [gr-qc]

  144. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Black holes with surrounding matter in scalar-tensor theories. Phys. Rev. Lett. 111, 111101 (2013). arXiv:1308.6587 [gr-qc]

  145. V. Cardoso, I.P. Carucci, P. Pani, T.P. Sotiriou, Matter around Kerr black holes in scalar-tensor theories: scalarization and superradiant instability. Phys. Rev. D88, 044056 (2013). arXiv:1305.6936 [gr-qc]

  146. S. Chandrasekhar, V. Ferrari, On the non-radial oscillations of slowly rotating stars induced by the lense-thirring effect. Proc. R. Soc. Lond. A433, 423–440 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  147. S.L. Detweiler, Klein-Gordon equation and rotating black holes. Phys. Rev. D22, 2323–2326 (1980)

    ADS  Google Scholar 

  148. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  149. D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D13, 198–206 (1976)

    ADS  Google Scholar 

  150. D.C. Dai, D. Stojkovic, Analytic explanation of the strong spin-dependent amplification in Hawking radiation from rotating black holes. J. High Energy Phys. 1008, 016 (2010). arXiv:1008.4586 [gr-qc]

  151. I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole superradiance from Kerr/CFT. J. High Energy Phys. 1004, 019 (2010). arXiv:0907.3477 [hep-th]

  152. M. Guica, T. Hartman, W. Song, A. Strominger, The Kerr/CFT correspondence. Phys. Rev. D80, 124008 (2009). arXiv:0809.4266 [hep-th]

  153. G. Compere, The Kerr/CFT correspondence and its extensions: a comprehensive review. Living Rev. Relativ. 15, 11 (2012). arXiv:1203.3561 [hep-th]

  154. J.M. Bardeen, G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS(2) x S**2. Phys. Rev. D60, 104030 (1999). arXiv:hep-th/9905099 [hep-th]

  155. A.J. Amsel, G.T. Horowitz, D. Marolf, M.M. Roberts, Uniqueness of extremal Kerr and Kerr-Newman black holes. Phys. Rev. D81, 024033 (2010). arXiv:0906.2367 [gr-qc]

  156. O.J. Dias, H.S. Reall, J.E. Santos, Kerr-CFT and gravitational perturbations. J. High Energy Phys. 0908, 101 (2009). arXiv:0906.2380 [hep-th]

  157. J.D. Bekenstein, A universal upper bound on the entropy to energy ratio for bounded systems. Phys. Rev. D23, 287 (1981)

  158. T.K. Das, Transonic black hole accretion as analogue system. Conf. Proc. C0405132, 279–304 (2004). arXiv:gr-qc/0411006 [gr-qc]

  159. T.K. Das, N. Bilic, S. Dasgupta, Black-hole accretion disc as an analogue gravity model. J. Cosmol. Astropart. Phys. 0706, 009 (2007). arXiv:astro-ph/0604477 [astro-ph]

  160. E. Chaverra, M.D. Morales, O. Sarbach, Quasi-normal acoustic oscillations in the Michel flow. arXiv:1501.01637 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito, R., Cardoso, V., Pani, P. (2015). Superradiance in Black Hole Physics. In: Superradiance. Lecture Notes in Physics, vol 906. Springer, Cham. https://doi.org/10.1007/978-3-319-19000-6_3

Download citation

Publish with us

Policies and ethics