Skip to main content

Introduction

  • Chapter
Superradiance

Part of the book series: Lecture Notes in Physics ((LNP,volume 906))

Abstract

Radiation-enhancement processes have a long history that can be traced back to the dawn of quantum mechanics, when Klein showed that the Dirac equation allows for electrons to be transmitted even in classically forbidden regions [1]. In 1971 Zel’dovich showed that scattering of radiation off rotating absorbing surfaces results, under certain conditions, in waves with a larger amplitude [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Klein, Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von dirac. Z. Phys. 53(3–4), 157–165 (1929). http://dx.doi.org/10.1007/BF01339716

  2. Y.B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz. 14, 270 (1971) [JETP Lett. 14, 180 (1971)]

    Google Scholar 

  3. Y.B. Zel’dovich, Zh. Eksp. Teor. Fiz 62, 2076 (1972) [Sov. Phys. JETP 35, 1085 (1972)]

    Google Scholar 

  4. J. Bekenstein, Extraction of energy and charge from a black hole. Phys. Rev. D7, 949–953 (1973)

    MathSciNet  ADS  Google Scholar 

  5. J.D. Bekenstein, M. Schiffer, The many faces of superradiance. Phys. Rev. D58, 064014 (1998). arXiv:gr-qc/9803033 [gr-qc]

  6. S. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Hawking, A Brief History of Time (Bantam Dell Publishing Group, New York, 1988)

    Google Scholar 

  8. A. Arvanitaki, S. Dubovsky, Exploring the string axiverse with precision black hole physics. Phys. Rev. D83, 044026 (2011). arXiv:1004.3558 [hep-th]

  9. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Black hole bombs and photon mass bounds. Phys. Rev. Lett. 109, 131102 (2012). arXiv:1209.0465 [gr-qc]

  10. R. Brito, V. Cardoso, P. Pani, Massive spin-2 fields on black hole spacetimes: instability of the Schwarzschild and Kerr solutions and bounds on the graviton mass. Phys. Rev. D88, 023514 (2013). arXiv:1304.6725 [gr-qc]

  11. C.A.R. Herdeiro, E. Radu, Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014). arXiv:1403.2757 [gr-qc]

  12. V. Cardoso, O.J. Dias, Small Kerr-anti-de Sitter black holes are unstable. Phys. Rev. D70, 084011 (2004). arXiv:hep-th/0405006 [hep-th]

  13. O.J. Dias, P. Figueras, S. Minwalla, P. Mitra, R. Monteiro et al., Hairy black holes and solitons in global AdS 5. J. High Energy Phys. 1208, 117 (2012). arXiv:1112.4447 [hep-th]

  14. O.J. Dias, G.T. Horowitz, J.E. Santos, Black holes with only one killing field. J. High Energy Phys. 1107, 115 (2011). arXiv:1105.4167 [hep-th]

  15. M. Shibata, H. Yoshino, Bar-mode instability of rapidly spinning black hole in higher dimensions: numerical simulation in general relativity. Phys. Rev. D81, 104035 (2010). arXiv:1004.4970 [gr-qc]

  16. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

  17. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D78, 065034 (2008). arXiv:0801.2977 [hep-th]

  18. S.A. Hartnoll, Horizons, holography and condensed matter (2011). arXiv:1106.4324 [hep-th]

  19. R. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954)

    Article  ADS  MATH  Google Scholar 

  20. V.L. Ginzburg, I.M. Frank, Dokl. Akad. Nauk Ser. Fiz. SSSR 56 583 (1947)

    Google Scholar 

  21. A. Einstein, The foundation of the general theory of relativity. Ann. Phys. 49, 769–822 (1916)

    Article  MATH  Google Scholar 

  22. K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 189–196 (1916). arXiv:physics/9905030 [physics]

  23. T. Kaluza, On the problem of unity in physics. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921).

    Google Scholar 

  24. O. Klein, Quantum theory and five-dimensional theory of relativity (In German and English). Z. Phys. 37, 895–906 (1926)

    Article  ADS  MATH  Google Scholar 

  25. C.A. Manogue, The Klein paradox and superradiance. Ann. Phys. 181, 261–283 (1988)

    Article  ADS  Google Scholar 

  26. S. Chandrasekhar, The maximum mass of ideal white dwarfs. Astrophys. J. 74, 81–82 (1931)

    Article  ADS  MATH  Google Scholar 

  27. J. Oppenheimer, G. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    Article  ADS  MATH  Google Scholar 

  28. I.E. Tamm, I.M. Frank, Dokl. Akad. Nauk SSSR 14, 109 (1937)

    MATH  Google Scholar 

  29. V. Ginzburg, I. Frank, Radiation of a uniformly moving electron due to its transition from one medium into another. J.Phys. (USSR) 9, 353–362 (1945)

    Google Scholar 

  30. J. Pierce, Electrons and Waves (New York, Anchor Books, 1964)

    Google Scholar 

  31. http://www.r-type.org/articles/art-030.htm

  32. S. Smith, E. Purcell, Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)

  33. B. Billinghurst, J. Bergstrom, L. Dallin, M. de Jong, T. May et al., Observation of superradiant synchrotron radiation in the terahertz region. Phys. Rev. ST Accel. Beams. 16(6), 060702 (2013)

  34. T. Regge, J.A. Wheeler, Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D. Finkelstein, Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110, 965–967 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. E. Newman, R. Penrose, An approach to gravitational radiation by a method of spin coefficients. J. Math. Phys. 3, 566–578 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  37. R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Schmidt, 3C 273: a star-like object with large red-shift. Nature 197, 1040 (1963)

    Article  ADS  Google Scholar 

  39. C.T. Bolton, Cygnus X-1-Dimensions of the system. Nature 240, 124 (1972)

    ADS  Google Scholar 

  40. R. Ruffini, J.A. Wheeler, Introducing the black hole. Phys. Today 24, 30 (1971)

    Article  ADS  Google Scholar 

  41. J.A. Wheeler, Our universe: the known and the unknown. Phys. Teach. 7, 1 (1969)

    Article  Google Scholar 

  42. J.A. Wheeler, K. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics (Norton, New York, 1998), p. 380

    MATH  Google Scholar 

  43. R. Penrose, Nuovo Cimento. J. Serie 1, 252 (1969)

    Google Scholar 

  44. R.M. Wald, Gravitational collapse and cosmic censorship (1997). arXiv:gr-qc/9710068 [gr-qc]

  45. F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)

    Article  ADS  Google Scholar 

  46. F. Zerilli, Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics. Phys. Rev. D2, 2141–2160 (1970)

    MathSciNet  ADS  Google Scholar 

  47. C.V. Vishveshwara, Scattering of gravitational radiation by a Schwarzschild black hole. Nature 227, 936 (1970)

    Article  ADS  Google Scholar 

  48. H.-P. Nollert, TOPICAL REVIEW: quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars. Classical Quantum Gravity 16, R159–R216 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. K.D. Kokkotas, B.G. Schmidt, Quasinormal modes of stars and black holes. Living Rev. Relativ. 2, 2 (1999). arXiv:gr-qc/9909058 [gr-qc]

  50. V. Ferrari, L. Gualtieri, Quasi-normal modes and gravitational wave astronomy. Gen. Relativ. Gravit. 40, 945–970 (2008). arXiv:0709.0657 [gr-qc]

  51. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Classical Quantum Gravity 26, 163001 (2009). arXiv:0905.2975 [gr-qc]

  52. R. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). arXiv:1102.4014 [gr-qc]

  53. A. Starobinski, Amplification of waves during reflection from a rotating black hole. Zh. Eksp. Teor. Fiz. 64, 48. (1973) [Sov. Phys. JETP 37, 28 (1973)]

    Google Scholar 

  54. A.A. Starobinski, S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole. Zh. Eksp. Teor. Fiz. 65, 3 (1973) [Sov. Phys. JETP 38, 1 (1973)]

    Google Scholar 

  55. N. Deruelle, R. Ruffini, Quantum and classical relativistic energy states in stationary geometries. Phys. Lett. B52, 437–441 (1974)

    Article  ADS  Google Scholar 

  56. N. Deruelle, R. Ruffini, Klein paradox in a Kerr geometry. Phys. Lett. B57, 248 (1975)

  57. S.A. Teukolsky, Rotating black holes—separable wave equations for gravitational and electromagnetic perturbations. Phys. Rev. Lett. 29, 1114–1118 (1972)

    Article  ADS  Google Scholar 

  58. S. Teukolsky, W. Press, Perturbations of a rotating black hole. III - Interaction of the hole with gravitational and electromagnet ic radiation. Astrophys. J. 193, 443–461 (1974)

  59. W.H. Press, S.A. Teukolsky, Floating orbits, superradiant scattering and the black-hole bomb. Nature 238, 211–212 (1972)

    Article  ADS  Google Scholar 

  60. W. Unruh, Separability of the Neutrino equations in a Kerr background. Phys. Rev. Lett. 31, 1265–1267 (1973)

    Article  ADS  Google Scholar 

  61. S. Chandrasekhar, The solution of Dirac’s equation in Kerr geometry. R. Soc. Lond. Proc. Ser. A 349, 571–575 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  62. B.R. Iyer, A. Kumar, Note on the absence of massive fermion superradiance from a Kerr black hole. Phys. Rev. 18, 4799–4801 (1978)

    ADS  Google Scholar 

  63. R. Blandford, R. Znajek, Electromagnetic extractions of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    Article  ADS  Google Scholar 

  64. T. Damour, N. Deruelle, R. Ruffini, On quantum resonances in stationary geometries. Lett. Nuovo Cim. 15, 257–262 (1976)

    Article  ADS  Google Scholar 

  65. S.L. Detweiler, Klein-Gordon equation and rotating black holes. Phys. Rev. D22, 2323–2326 (1980)

    ADS  Google Scholar 

  66. T. Zouros, D. Eardley, Instabilities of massive scalar perturbations of a rotating black hole. Ann. Phys. 118, 139–155 (1979)

    Article  ADS  Google Scholar 

  67. J.L. Friedman, Ergosphere instability. Commun. Math. Phys. 63, 243–255 (1978)

    Article  ADS  MATH  Google Scholar 

  68. S. Chandrasekhar, The Mathematical Theory of Black Holes (Oxford University Press, Oxford, 1983)

    MATH  Google Scholar 

  69. E. Leaver, An Analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A402, 285–298 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  70. E.W. Leaver, Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27, 1238 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. E.W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry. Phys. Rev. D34, 384–408 (1986)

    MathSciNet  ADS  Google Scholar 

  72. V. Cardoso, S.J. Dias, G.S. Hartnett, L. Lehner, J.E. Santos, Holographic thermalization, quasinormal modes and superradiance in Kerr-AdS. J. High Energy Phys. 1404, 183 (2014). arXiv:1312.5323 [hep-th]

  73. J.E. McClintock, R.A. Remillard, The black hole binary A0620-00. Astrophys. J. 308, 110 (1986)

    Article  ADS  Google Scholar 

  74. R.C. Myers, M. Perry, Black holes in higher dimensional space-times. Ann. Phys. 172, 304 (1986)

  75. Y. Kojima, Equations governing the nonradial oscillations of a slowly rotating relativistic star. Phys. Rev. D46, 4289–4303 (1992)

    MathSciNet  ADS  Google Scholar 

  76. Y. Kojima, Coupled pulsations between polar and axial modes in a slowly rotating relativistic star. Prog. Theor. Phys. 90, 977–990 (1993)

    Article  ADS  Google Scholar 

  77. Y. Kojima, Normal modes of relativistic stars in slow rotation limit. Astrophys. J. 414, 247–253 (1993)

    Article  ADS  Google Scholar 

  78. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

  79. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory. Phys. Lett. B428, 105–114 (1998). arXiv:hep-th/9802109

  80. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

  81. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000). arXiv:hep-th/9905111

  82. T. Banks, W. Fischler, A model for high-energy scattering in quantum gravity (1999). arXiv:hep-th/9906038 [hep-th]

  83. S. Dimopoulos, G.L. Landsberg, Black holes at the LHC. Phys. Rev. Lett. 87, 161602 (2001). arXiv:hep-ph/0106295 [hep-ph]

  84. S.B. Giddings, S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D65, 056010 (2002). arXiv:hep-ph/0106219 [hep-ph]

  85. R. Emparan, H.S. Reall, A rotating black ring solution in five-dimensions. Phys. Rev. Lett. 88, 101101 (2002). arXiv:hep-th/0110260 [hep-th]

  86. H. Kodama, A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions. Prog. Theor. Phys. 110, 701–722 (2003). arXiv:hep-th/0305147

  87. A. Ishibashi, H. Kodama, Stability of higher-dimensional Schwarzschild black holes. Prog. Theor. Phys. 110, 901–919 (2003). arXiv:hep-th/0305185

  88. H. Kodama, A. Ishibashi, Master equations for perturbations of generalized static black holes with charge in higher dimensions. Prog. Theor. Phys. 111, 29–73 (2004). arXiv:hep-th/0308128

  89. Y. Shlapentokh-Rothman, Exponentially growing finite energy solutions for the Klein-Gordon equation on sub-extremal Kerr spacetimes. Commun. Math. Phys. 329, 859–891 (2014). arXiv:1302.3448 [gr-qc]

  90. LIGO Scientific Collaboration, LIGO: The Laser Interferometer Gravitational-Wave Observatory (2009). arXiv:0711.3041 [gr-qc]

  91. V. Cardoso, O.J. Dias, J.L. Hovdebo, R.C. Myers, Instability of non-supersymmetric smooth geometries. Phys. Rev. D73, 064031 (2006). arXiv:hep-th/0512277 [hep-th]

  92. O.J. Dias, R. Emparan, A. Maccarrone, Microscopic theory of black hole superradiance. Phys. Rev. D77, 064018 (2008). arXiv:0712.0791 [hep-th]

  93. B.D. Chowdhury, S.D. Mathur, Radiation from the non-extremal fuzzball. Classical Quantum Gravity 25, 135005 (2008). arXiv:0711.4817 [hep-th]

  94. B.D. Chowdhury, S.D. Mathur, Pair creation in non-extremal fuzzball geometries. Classical Quantum Gravity 25, 225021 (2008). arXiv:0806.2309 [hep-th]

  95. O.J. Dias, R. Monteiro, H.S. Reall, J.E. Santos, A scalar field condensation instability of rotating anti-de Sitter black holes. J. High Energy Phys. 1011, 036 (2010). arXiv:1007.3745 [hep-th]

  96. P. Basu, J. Bhattacharya, S. Bhattacharyya, R. Loganayagam, S. Minwalla et al., Small hairy black holes in global ads spacetime. J. High Energy Phys. 1010, 045 (2010). arXiv:1003.3232 [hep-th]

  97. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, J. March-Russell, String axiverse. Phys. Rev. D81, 123530 (2010). arXiv:0905.4720 [hep-th]

  98. V. Cardoso, S. Chakrabarti, P. Pani, E. Berti, L. Gualtieri, Floating and sinking: the imprint of massive scalars around rotating black holes. Phys. Rev. Lett. 107, 241101 (2011). arXiv:1109.6021 [gr-qc]

  99. P. Pani, V. Cardoso, L. Gualtieri, E. Berti, A. Ishibashi, Perturbations of slowly rotating black holes: massive vector fields in the Kerr metric. Phys. Rev. D86, 104017 (2012). arXiv:1209.0773 [gr-qc]

  100. H. Witek, V. Cardoso, A. Ishibashi, U. Sperhake, Superradiant instabilities in astrophysical systems. Phys. Rev. D87, 043513 (2013). arXiv:1212.0551 [gr-qc]

  101. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)

  102. W.E. East, F.M. Ramazanoglu, F. Pretorius, Black hole superradiance in dynamical spacetime. Phys. Rev. D89, 061503 (2014). arXiv:1312.4529 [gr-qc]

  103. H. Okawa, H. Witek, V. Cardoso, Black holes and fundamental fields in numerical relativity: initial data construction and evolution of bound states. Phys. Rev. D89, 104032 (2014). arXiv:1401.1548 [gr-qc]

  104. S. Hod, Stationary scalar clouds around rotating black holes. Phys. Rev. D86, 104026 (2012). arXiv:1211.3202 [gr-qc]

  105. Z. Zhu, S.-J. Zhang, C. Pellicer, B. Wang, E. Abdalla, Stability of Reissner-Nordström black hole in de Sitter background under charged scalar perturbation. Phys. Rev. D90(4), 044042 (2014). arXiv:1405.4931 [hep-th]

  106. R. Konoplya, A. Zhidenko, Charged scalar field instability between the event and cosmological horizons. Phys. Rev. D90, 064048 (2014). arXiv:1406.0019 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brito, R., Cardoso, V., Pani, P. (2015). Introduction. In: Superradiance. Lecture Notes in Physics, vol 906. Springer, Cham. https://doi.org/10.1007/978-3-319-19000-6_1

Download citation

Publish with us

Policies and ethics