Skip to main content

Laser Applications

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

Transparent ceramics have found various applications, including lasers, scintillator, electro-optical, lighting, and armors, with their applications in solid-state lasers being the most important and most extensively and intensively studied. In this chapter, transparent ceramics for the applications in solid-state lasers will be presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ikesue A, Aung YL, Lupei V (2014) Ceramic lasers. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high-performance polycrystalline Nd-YAG ceramics for solid-state lasers. J Am Ceram Soc 78:1033–1040

    Google Scholar 

  3. Greskovich C, Chernoch JP (1973) Polycrystalline ceramic lasers. J Appl Phys 44:4599–4606

    Google Scholar 

  4. Ikesue A, Aung YL (2008) Ceramic laser materials. Nat Photonics 2:721–727

    Google Scholar 

  5. Lu J, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K et al (2002) Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic. Appl Phys Lett 81:4324–4326

    Google Scholar 

  6. Lu J, Bisson JF, Takaichi K, Uematsu T, Shirakawa A, Musha M et al (2003) Yb3+:Sc2O3 ceramic laser. Appl Phys Lett 83:1101–1103

    Google Scholar 

  7. Lu JH, Lu JR, Murai T, Takaichi K, Uematsu T, Xu JQ et al (2002) 36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser. Opt Lett 27:1120–1122

    Google Scholar 

  8. Takaichi K, Yagi H, Lu JR, Bisson JF, Shirakawa A, Ueda K et al (2004) Highly efficient continuous-wave operation at 1030 and 1075 nm wavelengths of LD-pumped Yb3+:Y2O3 ceramic lasers. Appl Phys Lett 84:317–319

    Google Scholar 

  9. Takaichi K, Yagi H, Shirakawa A, Ueda K, Yanagitani T, Kaminskii AA et al (2005) Highly transparent Yb-doped ceramics and the laser-diode-pumped ceramic lasers. IEEE, New York

    Google Scholar 

  10. Ikesue A, Aung YL (2006) Synthesis and performance of advanced ceramic lasers. J Am Ceram Soc 89:1936–1944

    Google Scholar 

  11. Lupei V (2009) Ceramic laser materials and the prospect for high power lasers. Opt Mater 31:701–706

    Google Scholar 

  12. Wang YB, Wang BS, Bo Y, Xu JL, Song S, Peng QJ et al (2010) High efficiency, high power QCW diode-side-pumped Nd:YAG ceramic laser at 1064 nm based on domestic ceramic. Chin Opt Lett 8:1144–1146

    Google Scholar 

  13. Gheorghe C, Lupei A, Lupei V, Ikesue A, Enculescu M (2011) Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material. Opt Mater 33:501–505

    Google Scholar 

  14. Liu WB, Zhang D, Zeng YP, Li J, Pan YB, Guo JK et al (2012) Diode-side-pumped 1123 nm Nd:YAG ceramic laser. Ceram Int 38:6969–6973

    Google Scholar 

  15. Wang Y, Chen H, Shen DY, Zhang J, Tang DY (2013) High power continuous-wave and graphene Q-switched operation of Er:YAG ceramic lasers at similar to 1.6 μm. J Opt Soc Korea 17:5–9

    Google Scholar 

  16. Liu Q, Liu J, Li J, Ivanov M, Medvedev A, Zeng Y et al (2014) Solid-state reactive sintering of YAG transparent ceramics for optical applications. J Alloy Compd 616:81–88

    Google Scholar 

  17. Wang J, Zhang F, Chen F, Zhang J, Zhang HL, Tian R et al (2015) Effect of Y2O3 and La2O3 on the sinterability of gamma-AlON transparent ceramics. J Eur Ceram Soc 35:23–28

    Google Scholar 

  18. Yang H, Zhang L, Luo D, Qiao X, Zhang J, Zhao T et al (2015) Optical properties of Ho:YAG and Ho:LuAG polycrystalline transparent ceramics. Opt Mater Expr 5:142–148

    Google Scholar 

  19. Lupei V (2003) Efficiency enhancement and power scaling of Nd lasers. Opt Mater 24:353–368

    Google Scholar 

  20. Lupei V, Pavel N, Taira T (2003) Basic enhancement of the overall optical efficiency of intracavity frequency-doubling devices for the 1 μm continuous-wave Nd: Y3Al5O12 laser emission. Appl Phys Lett 83:3653–3655

    Google Scholar 

  21. Rosenkra LJ (1972) GaAs diode-pumped Nd-YAG laser. J Appl Phys 43:4603–4605

    Google Scholar 

  22. Rosenkra Lj, Rowley RS (1974) CW operation of a GaAs diode pumped Nd-YAG laser. IEEE J Quantum Electron QE10:710–711

    Google Scholar 

  23. Ross M (1968) YAG laser operation by semiconductor laser pumping. Proc Inst Electr Electron Eng 56:196–197

    Google Scholar 

  24. Lupei V, Lupei A, Gheorghe C, Ikesue A (2008) Comparative high-resolution spectroscopy and emission dynamics of Nd-doped GSGG crystals and transparent ceramics. J Lumin 128:885–887

    Google Scholar 

  25. Lavi R, Jackel S (2000) Thermally boosted pumping of neodymium lasers. Appl Opt 39:3093–3098

    Google Scholar 

  26. Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Apter M (2001) Thermally-boosted pumping of Nd:YAG using high power 885 nm diodes. In: Marshall C (ed) Advanced solid-state lasers, Proceedings 2001, pp 693–695

    Google Scholar 

  27. Lavi R, Jackel S, Tal A, Lebiush E, Tzuk Y, Goldring S (2001) 885 nm high-power diodes end-pumped Nd:YAG laser. Opt Commun 195:427–430

    Google Scholar 

  28. Lavi R, Jackel S, Tzuk Y, Winik M, Lebiush E, Katz M et al (1999) Efficient pumping scheme for neodymium-doped materials by direct excitation of the upper lasing level. Appl Opt 38:7382–7385

    Google Scholar 

  29. Lupei V, Lupei A, Georgescu S, Taira T, Sato Y, Ikesue A (2001) The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd:YAG ceramics. Phys Rev B 64:092102

    Google Scholar 

  30. Lupei V, Taira T, Lupei A, Pavel N, Shoji I, Ikesue A (2001) Spectroscopy and laser emission under hot band resonant pump in highly doped Nd:YAG ceramics. Opt Commun 195:225–232

    Google Scholar 

  31. Lupei V, Lupei A, Pavel N, Taira T, Shoji I, Ikesue A (2001) Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics. Appl Phys Lett 79:590–592

    Google Scholar 

  32. Lupei V, Lupei A, Pavel N, Taira T, Ikesue A (2001) Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals. Appl Phys B Lasers Opt 73:757–762

    Google Scholar 

  33. Lupei V, Aka G, Vivien D (2002) Quasi-three-level 946 nm CW laser emission of Nd:YAG under direct pumping at 885 nm into the emitting level. Opt Commun 204:399–405

    Google Scholar 

  34. Goldring S, Lavi R (2008) Nd:YAG laser pumped at 946 nm. Opt Lett 33:669–671

    Google Scholar 

  35. Yagi H, Yanagitani T, Ueda K-I (2006) Nd3+:Y3Al5O12 laser ceramics: Flashlamp pumped laser operation with a UV cut filter. J Alloy Compd 421:195–199

    Google Scholar 

  36. Yagi H, Yanagitani T, Yoshida H, Nakatsuka M, Ueda K (2006) Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser. Jpn J Appl Phys Part 1 Regul Pap Brief Commun Rev Pap 45:133–135

    Google Scholar 

  37. Ikesue A, Kamata K, Yoshida K (1995) Synthesis of Nd3+, Cr3+-coped YAG ceramics for high-efficiency solid-state lasers. J Am Ceram Soc 78:2545–2547

    Google Scholar 

  38. Saiki T, Motokoshi S, Imasaki K, Fujioka K, Yoshida H, Fujita H et al (2009) High repetition rate laser pulses amplified by Nd/Cr:YAG ceramic amplifier under CW arc-lamp-light pumping. Opt Commun 282:2556–2559

    Google Scholar 

  39. Saiki T, Motokoshi S, Imasaki K, Fujioka K, Yoshida H, Fujita H et al (2009) Laser pulses amplified by Nd/Cr:YAG ceramic amplifier using lamp and solar light sources. Opt Commun 282:1358–1362

    Google Scholar 

  40. Saiki T, Motokoshi S, Imasaki K, Nakatsuka M, Yamanaka C, Fujioka K et al (2009) Two-pass amplification of CW laser by Nd/Cr:YAG ceramic active mirror under lamp light pumping. Opt Commun 282:936–939

    Google Scholar 

  41. Saiki T, Nakatsuka M, Fujioka K, Motokoshi S, Imasaki K (2011) Cross-relaxation and spectral broadening of gain for Nd/Cr:YAG ceramic lasers with white-light pump source under high-temperature operation. Opt Commun 284:2980–2984

    Google Scholar 

  42. Saiki T, Nakatsuka M, Imasaki K (2010) Highly efficient lasing action of Nd3+- and Cr3+-doped yttrium aluminum garnet ceramics based on phonon-assisted cross-relaxation using solar light source. Jpn J Appl Phys 49:082702

    Google Scholar 

  43. Lupei V, Lupei A, Ikesue A (2005) Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl Phys Lett 86:111118

    Google Scholar 

  44. Lupei A, Lupei V, Ikesue A, Gheorghe C (2010) Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics. J Opt Soc Am B Opt Phys 27:1002–1010

    Google Scholar 

  45. Lupei V, Lupei A, Gheorghe C, Hau S, Ikesue A (2009) Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high-energy Yb lasers. Opt Lett 34:2141–2143

    Google Scholar 

  46. Lupei V, Lupei A, Gheorghe C, Ikesue A (2010) Sensitized Yb3+ emission in (Nd, Yb):Y3Al5O12 transparent ceramics. J Appl Phys 108:123112

    Google Scholar 

  47. Petit V, Camy P, Doualan JL, Moncorge R (2006) CW and tunable laser operation of Yb3+ in Nd: Yb:CaF2. Appl Phys Lett 88:051111

    Google Scholar 

  48. Petit V, Camy P, Doualan JL, Portier X, Moncorge R (2008) Spectroscopy of Yb3+: Ca2: From isolated centers to clusters. Phys Rev B 78:085131

    Google Scholar 

  49. Petit V, Doualan JL, Camy P, Menard V, Moncorge R (2004) CW and tunable laser operation of Yb3+ doped CaF2. Appl Phys B Lasers Opt 78:681–684

    Google Scholar 

  50. Kallel T, Hassairi MA, Dammak M, Lyberis A, Gredin P, Mortier M (2014) Spectra and energy levels of Yb3+ ions in CaF2 transparent ceramics. J Alloy Compd 584:261–268

    Google Scholar 

  51. Kaminskii AA, Bagaev SN, Ueda K, Shirakawa A, Tokurakawa T, Yagi H et al (2009) Stimulated-emission spectroscopy of fine-grained “garnet” ceramics Nd3+:Y3Al5O12 in a wide temperature range between 77 and 650 K. Laser Phys Lett 6:682–687

    Google Scholar 

  52. Koechner W (1970) Absorbed pumb powder, thermal profile and stresses in a CW pumped Nd-YAG crystal. Appl Opt 9:1429–1434

    Google Scholar 

  53. Kracht D, Wilhelm R, Frede M, Dupre K, Ackermann L (2005) 407 W end-pumped multi-segmented Nd:YAG laser. Opt Express 13:10140–10144

    Google Scholar 

  54. Wilhelm R, Frede M, Kracht D (2008) Power scaling of end-pumped solid-state rod lasers by longitudinal dopant concentration gradients. IEEE J Quantum Electron 44:232–244

    Google Scholar 

  55. Denis T, Hahn S, Mebben S, Wilhelm R, Kolleck C, Neumann J et al (2010) Compact diode stack end pumped Nd:YAG amplifier using core doped ceramics. Appl Opt 49:811–816

    Google Scholar 

  56. Kracht D, Frede M, Wilhelm R, Fallnich C (2005) Comparison of crystalline and ceramic composite Nd:YAG for high power diode end-pumping. Opt Express 13:6212–6216

    Google Scholar 

  57. Kracht D, Freiburg D, Wilhelm R, Frede M, Fallnich C (2006) Core-doped ceramic Nd:YAG laser. Opt Express 14:2690–2694

    Google Scholar 

  58. Puncken O, Winkelmann L, Frede M, Wessels P, Neumann J, Kracht D (2012) Heat generation in Nd:YAG at different doping levels. Appl Opt 51:7586–7590

    Google Scholar 

  59. Wilhelm R, Freiburg D, Frede M, Kracht D, Fallnich C (2009) Design and comparison of composite rod crystals for power scaling of diode end-pumped Nd:YAG lasers. Opt Express 17:8229–8236

    Google Scholar 

  60. Straesser A, Ostermeyer M (2006) Improving the brightness of side pumped power amplifiers by using core doped ceramic rods. Opt Express 14:6687–6693

    Google Scholar 

  61. Huang T, Jiang B, Wu Y, Li J, Shi Y, Liu W et al (2009) Fabrication, microstructure and optical properties of titanium doped YAG transparent ceramic. J Alloy Compd 478:L16–L20

    Google Scholar 

  62. Wilhelm R, Freiburg D, Frede M, Kracht D (2008) End-pumped Nd:YAG laser with a longitudinal hyperbolic dopant concentration profile. Opt Express 16:20106–20116

    Google Scholar 

  63. Kouznetsov D, Bisson JF (2008) Role of undoped cap in the scaling of thin-disk lasers. J Opt Soc Am B Opt Phys 25:338–345

    Google Scholar 

  64. Kouznetsov D, Bisson JF, Dong J, Ueda KI (2006) Surface loss limit of the power scaling of a thin-disk laser. J Opt Soc Am B Opt Phys 23:1074–1082

    Google Scholar 

  65. Kouznetsov D, Bisson JF, Ueda K (2009) Scaling laws of disk lasers. Opt Mater 31:754–759

    Google Scholar 

  66. Bagayev SN, Kaminskii AA, Kopylov YL, Kotelyanskii IM, Kravchenko VB (2012) Simple method to join YAG ceramics and crystals. Opt Mater 34:951–954

    Google Scholar 

  67. Ge L, Li J, Zhou ZW, Qu HY, Dong MJ, Zhu Y et al (2014) Fabrication of composite YAG/Nd:YAG/YAG transparent ceramics for planar waveguide laser. Opt Mater Express 4:1042–1049

    Google Scholar 

  68. Tang F, Cao YG, Huang JQ, Guo W, Liu HG, Huang QF et al (2012) Multilayer YAG/RE:YAG/YAG laser ceramic prepared by tape casting and vacuum sintering method. J Eur Ceram Soc 32:3995–4002

    Google Scholar 

  69. Sandu O, Salamu G, Pavel N, Dascalu T, Chuchumishev D, Gaydardzhiev A et al (2012) High-peak power, passively Q-switched, composite, all-polycrystalline ceramic Nd:YAG/Cr4+:YAG lasers. Quantum Electron 42:211–215

    Google Scholar 

  70. Ma J, Dong J, Ki Ueda, Kaminskii AA (2011) Optimization of Yb:YAG/Cr4+:YAG composite ceramics passively Q-switched microchip lasers. Appl Phys B Lasers Opt 105:749–760

    Google Scholar 

  71. Pavel N, Tsunekane M, Taira T (2011) Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition. Opt Express 19:9378–9384

    Google Scholar 

  72. Salamu G, Ionescu A, Brandus CA, Sandu O, Pavel N, Dascalu T (2012) High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG laser and generation of 532-nm green light. Laser Phys 22:68–73

    Google Scholar 

  73. Tang F, Cao Y, Huang J, Liu H, Guo W, Wang W (2012) Fabrication and laser behavior of composite Yb:YAG ceramic. J Am Ceram Soc 95:56–59

    Google Scholar 

  74. Liu WB, Zeng YP, Li J, Shen Y, Bo Y, Zong N et al (2012) Sintering and laser behavior of composite YAG/Nd:YAG/YAG transparent ceramics. J Alloy Compd 527:66–70

    Google Scholar 

  75. Marquardt K, Petrishcheva E, Abart R, Gardes E, Wirth R, Dohmen R et al (2010) Volume diffusion of Ytterbium in YAG: thin-film experiments and combined TEM-RBS analysis. Phys Chem Miner 37:751–760

    Google Scholar 

  76. Marquardt K, Petrishcheva E, Gardes E, Wirth R, Abart R, Heinrich W (2011) Grain boundary and volume diffusion experiments in yttrium aluminium garnet bicrystals at 1,723 K: aminiaturized study. Contrib Miner Petrol 162:739–749

    Google Scholar 

  77. Hollingsworth JP, Kuntz JD, Soules TF (2009) Neodymium ion diffusion during sintering of Nd:YAG transparent ceramics. J Phys D Appl Phys 42

    Google Scholar 

  78. Hollingsworth JP, Kuntz JD, Ryerson FJ, Soules TF (2011) Nd diffusion in YAG ceramics. Opt Mater 33:592–595

    Google Scholar 

  79. Wisdom JA, Gaume RM, Byer RL (2010) Laser-gain scanning microscopy: a new characterization technique for dopant engineered gain media. Opt Express 18:18912–18921

    Google Scholar 

  80. Furuse H, Kawanaka J, Miyanaga N, Saiki T, Imasaki K, Fujita M et al (2011) Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics. Opt Express 19:2448–2455

    Google Scholar 

  81. Furuse H, Kawanaka J, Takeshita K, Miyanaga N, Saiki T, Imasaki K et al (2009) Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics. Opt Lett 34:3439–3441

    Google Scholar 

  82. Furuse H, Sakurai T, Chosrowjan H, Kawanaka J, Miyanaga N, Fujita M et al (2014) Amplification characteristics of a cryogenic Yb3+:YAG total-reflection active-mirror laser. Appl Opt 53:1964–1969

    Google Scholar 

  83. Yoshida H, Tsubakimoto K, Fujimoto Y, Mikami K, Fujita H, Miyanaga N et al (2011) Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator. Opt Express 19:15181–15187

    Google Scholar 

  84. Lin H, Zhou S, Teng H (2011) Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications. Opt Mater 33:1833–1836

    Google Scholar 

  85. Zheleznov D, Starobor A, Palashov O, Lin H, Zhou S (2014) Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping. Opt Lett 39:2183–2186

    Google Scholar 

  86. Feldman R, Golan Y, Burshtein Z, Jackel S, Moshe I, Meir A et al (2011) Strengthening of poly-crystalline (ceramic) Nd:YAG elements for high-power laser applications. Opt Mater 33:695–701

    Google Scholar 

  87. Feldman R, Shimony Y, Lebiush E, Golan Y (2008) Effect of hot acid etching on the mechanical strength of ground YAG laser elements. J Phys Chem Solids 69:839–846

    Google Scholar 

  88. Lu J, Prabhu M, Song J, Li C, Xu J, Ueda K et al (2000) Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl Phys B Lasers Opt 71:469–473

    Google Scholar 

  89. Shoji I, Kurimura S, Sato Y, Taira T, Ikesue A, Yoshida K (2000) Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics. Appl Phys Lett 77:939–941

    Google Scholar 

  90. Lu JR, Ueda K, Yagi H, Yanagitani T, Akiyama Y, Kaminskii AA (2002) Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloy Compd 341:220–225

    Google Scholar 

  91. Lupei V, Pavel N, Taira T (2002) Efficient laser emission in concentrated Nd laser materials under pumping into the emitting level. IEEE J Quantum Electron 38:240–245

    Google Scholar 

  92. Lupei V, Pavel N, Taira T (2002) Highly efficient laser emission in concentrated Nd:YVO4 components under direct pumping into the emitting level. Opt Commun 201:431–435

    Google Scholar 

  93. Li HF, Xu DG, Yang Y, Wang YY, Zhou R, Zhang TL et al (2005) Experimental 511 W composite Nd:YAG ceramic laser. Chin Phys Lett 22:2565–2567

    Google Scholar 

  94. Huss R, Wilhelm R, Kolleck C, Neumann J, Kracht D (2010) Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding. Opt Express 18:13094–13101

    Google Scholar 

  95. McNaught SJ, Komine H, Weiss SB, Simpson R, Johnson AMF, Machan J et al (2009) 100 kW coherently combined sab MOPAs. In: 2009 IEEE conference on lasers and electro-optics and quantum electronics and laser science conference, pp 830–831

    Google Scholar 

  96. Mandl A, Klimek DE (2010) Textron’s J-HPSSL 100 kW ThinZag (R) laser program. In: Conference on Lasers and Electro-Optics (CLEO)/Quantum Electronics and Laser Science Conference (QELS): WOS:000290513602227

    Google Scholar 

  97. Yamamoto RM, Parker JM, Allen KL, Allmon RW, Alviso KF, Barty CPJ et al (2007) Evolution of a solid state laser—art. no. 655205. In: Wood GL, Dubindkii MA (eds) Laser source technology for defense and security III, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 6552:55205

    Google Scholar 

  98. Li CY, Bo Y, Wang BS, Tian CY, Peng QJ, Cui DF et al (2010) A kilowatt level diode-side-pumped QCW Nd:YAG ceramic laser. Opt Commun 283:5145–5148

    Google Scholar 

  99. Lupei V, Pavel N, Taira T (2002) Highly efficient continuous-wave 946-nm Nd:YAG laser emission under direct 885-nm pumping. Appl Phys Lett 81:2677–2679

    Google Scholar 

  100. Lupei V, Pavel N, Taira T (2002) 1064 nm laser emission of highly doped Nd: Yttrium aluminum garnet under 885 nm diode laser pumping. Appl Phys Lett 80:4309–4311

    Google Scholar 

  101. Frede M, Wilhelm R, Kracht D (2006) 250 W end-pumped Nd:YAG laser with direct pumping into the upper laser level. Opt Lett 31:3618–3619

    Google Scholar 

  102. Yagi H, Yanagitani T, Takaichi K, Ueda K, Kaminskii AA (2007) Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics. Opt Mater 29:1258–1262

    Google Scholar 

  103. Zhang SS, Wang QP, Zhang XY, Cong ZH, Fan SZ, Liu ZJ et al (2009) Continuous-wave ceramic Nd:YAG laser at 1123 nm. Laser Phys Lett 6:864–867

    Google Scholar 

  104. Li C, Bo Y, Yang F, Wang Z, Xu Y, Wang Y et al (2010) 106.5 W high beam quality diode-side-pumped Nd:YAG laser at 1123 nm. Opt Express 18:7923–7928

    Google Scholar 

  105. Li CY, Bo Y, Xu JL, Tian CY, Peng QJ, Cui DF et al (2011) Simultaneous dual-wavelength oscillation at 1116 and 1123 nm of Nd:YAG laser. Opt Commun 284:4574–4576

    Google Scholar 

  106. Li CY, Bo Y, Xu YT, Yang F, Wang ZC, Wang BS et al (2010) 219.3 W CW diode-side-pumped 1123 nm Nd:YAG laser. Opt Commun 283:2885–2887

    Google Scholar 

  107. Wang Z, Liu H, Wang J, Lv Y, Sang Y, Lan R et al (2009) Passively Q-switched dual-wavelength laser output of LD-end-pumped ceramic Nd:YAG laser. Opt Express 17:12076–12081

    Google Scholar 

  108. Strohmaier SGP, Eichler HJ, Bisson JF, Yagi H, Takaichi K, Ueda K et al (2005) Ceramic Nd:YAG laser at 946 nm. Laser Phys Lett 2:383–386

    Google Scholar 

  109. Guo L, Lan R, Liu H, Yu H, Zhang H, Wang J et al (2010) 1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser. Opt Express 18:9098–9106

    Google Scholar 

  110. Chen L, Wang Z, Liu H, Zhuang S, Yu H, Guo L et al (2010) Continuous-wave tri-wavelength operation at 1064, 1319 and 1338 nm of LD end-pumped Nd:YAG ceramic laser. Opt Express 18:22167–22173

    Google Scholar 

  111. Cai H, Zhou J, Feng T, Yao G, Qi Y, Lou Q et al (2008) Dual-wavelength competitive output in Nd:Y3Sc1.5Al3.5O12 ceramic disk laser. Opt Commun 281:4401–4405

    Google Scholar 

  112. Saiki T, Motokoshi S, Imasaki K, Fujioka K, Fujita H, Nakatsuka M et al (2008) Effective fluorescence lifetime and stimulated emission cross-section of Nd/Cr:YAG ceramics under CW lamplight pumping. Jpn J Appl Phys 47:7896–7902

    Google Scholar 

  113. Yagi H, Yanagitani T, Yoshida H, Nakatsuka M, Ueda K (2007) The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics. Opt Laser Technol 39:1295–1300

    Google Scholar 

  114. Ohkubo T, Yabe T, Yoshida K, Uchida S, Funatsu T, Bagheri B et al (2009) Solar-pumped 80 W laser irradiated by a Fresnel lens. Opt Lett 34:175–177

    Google Scholar 

  115. Dinh TH, Ohkubo T, Yabe T (2014) Development of solar concentrators for high-power solar-pumped lasers. Appl Opt 53:2711–2719

    Google Scholar 

  116. Dinh TH, Ohkubo T, Yabe T, Kuboyama H (2012) 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod. Opt Lett 37:2670–2672

    Google Scholar 

  117. Greskovich C, Chernoch JP (1974) Improved polycrysalline ceramic lasers. J Appl Phys 45:4495–4502

    Google Scholar 

  118. Greskovich C, Woods KN (1973) Fabrication of transparent ThO2-doped Y2O3. Am Ceram Soc Bull 52:473–478

    Google Scholar 

  119. Lu JR, Lu JH, Murai T, Takaichi K, Uematsu T, Ueda K et al (2001) Nd3+:Y2O3 ceramic laser. Jpn J Appl Phys Part 2 Lett 40:L1277–L1279

    Google Scholar 

  120. Yang QH, Lu SZ, Zhang B, Zhang HJ, Zhou J, Yuan ZJ et al (2011) Preparation and laser performance of Nd-doped yttrium lanthanum oxide transparent ceramic. Opt Mater 33:692–694

    Google Scholar 

  121. Kurokawa H, Shirakawa A, Tokurakawa M, Ueda K, Kuretake S, Tanaka N et al (2011) Broadband-gain Nd3+-doped Ba(Zr, Mg, Ta)O3 ceramic lasers for ultrashort pulse generation. Opt Mater 33:667–669

    Google Scholar 

  122. Zhang JWW, Zou YYK, Chen QS, Zhang R, Li KRK, Jiang H et al (2006) Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics. Appl Phys Lett 89:061113

    Google Scholar 

  123. Zhao H, Sun XD, Zhang JW, Zou YYK, Li KWK, Wang YY et al (2011) Lasing action and optical amplification in Nd3+ doped electrooptic lanthanum lead zirconate titanate ceramics. Opt Express 19:2965–2971

    Google Scholar 

  124. Basiev TT, Doroshenko ME, Konyushkin VA, Osiko VV (2010) SrF2:Nd3+ laser fluoride ceramics. Opt Lett 35:4009–4011

    Google Scholar 

  125. Akiyama J, Sato Y, Taira T (2011) Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics. Appl Phys Express 4:022703

    Google Scholar 

  126. Akiyama J, Sato Y, Taira T (2010) Laser ceramics with rare-earth-doped anisotropic materials. Opt Lett 35:3598–3600

    Google Scholar 

  127. Wang CY, Ji JH, Qi YF, Lou QH, Zhu XL, Lu YT (2006) Kilohertz electro-optic Q-switched Nd:YAG ceramic laser. Chin Phys Lett 23:1797–1799

    Google Scholar 

  128. Qi YF, Zhu XL, Lou QH, Ji JH, Dong JX, Wei RR (2007) High-energy LDA switched side-pumped electro-optical Q-switched Nd:YAG ceramic laser. J Opt Soc Am B Opt Phys 24:1042–1045

    Google Scholar 

  129. Omatsu T, Nawata K, Sauder D, Minassian A, Damzen MJ (2006) Over 40-watt diffraction-limited Q-switched output from neodymium-doped YAG ceramic bounce amplifiers. Opt Express 14:8198–8204

    Google Scholar 

  130. Li P, Wang QP, Zhang XY, Wang YR, Chen XH (2010) Compact and efficient diode-pumped actively Q-switched 1319 nm Nd:YAG ceramic laser. Laser Phys 20:1603–1607

    Google Scholar 

  131. Zhang C, Zhang XY, Wang QP, Cong ZH, Fan SZ, Chen XH et al (2009) Diode-pumped Q-switched 946 nm Nd:YAG ceramic laser. Laser Phys Lett 6:521–525

    Google Scholar 

  132. Ikesue A, Yoshida K, Kamata K (1996) Transparent Cr4+-doped YAG ceramics for tunable lasers. J Am Ceram Soc 79:507–509

    Google Scholar 

  133. Yagi H, Takaichi K, Ueda K, Yanagitani T, Karninskii AA (2006) Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12. Opt Mater 29:392–396

    Google Scholar 

  134. Degnan JJ (1995) Optimization of passively Q-switched lasers. IEEE J Quantum Electron 31:1890–1901

    Google Scholar 

  135. Kalisky Y, Kalisky O, Rachum U, Boulon G, Brenier A (2007) Comparative performance of passively Q-switched diode-pumped Yb3+-doped tungstate and garnet lasers using Cr4+:YAG saturable absorber. IEEE J Sel Top Quantum Electron 13:502–510

    Google Scholar 

  136. Kalisky Y (2004) Cr4+-doped crystals: their use as lasers and passive Q-switches. Prog Quantum Electron 28:249–303

    Google Scholar 

  137. Kalisky Y, Kravchik L, Kokta MR (2004) Performance of diode-end-pumped Cr4+, Nd3+:YAG self-Q-switched and Nd:YAG/Cr4+:YAG diffusion bonded lasers. Opt Mater 24:607–614

    Google Scholar 

  138. Kalisky Y, Labbe C, Waichman K, Kravchik L, Rachum U, Deng P et al (2002) Passively Q-switched diode-pumped Yb:YAG laser using Cr4+-doped garnets. Opt Mater 19:403–413

    Google Scholar 

  139. Sakai H, Kan H, Taira T (2008) >1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser. Opt Express 16:19891–19899

    Google Scholar 

  140. Takaichi K, Lu JR, Murai T, Uematsu T, Shirakawa A, Ueda K et al (2002) Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers. Jpn J Appl Phys Part 2 Lett 41:L96–L98

    Google Scholar 

  141. Lan R, Wang Z, Liu H, Yu H, Guo L, Chen L et al (2010) Passively Q-switched Nd:YAG ceramic laser towards large pulse energy and short pulse width. Laser Phys 20:187–191

    Google Scholar 

  142. Kong J, Zhang ZZ, Tang DY, Xie GQ, Chan CC, Shen YH (2008) Diode end-pumped passively Q-switched Nd:YAG ceramic laser with Cr4+:YAG saturable absorber. Laser Phys 18:1508–1511

    Google Scholar 

  143. Feng Y, Lu JR, Takaichi K, Ueda K, Yagi H, Yanagitani T et al (2004) Passively Q-switched ceramic Nd3+:YAG/Cr4+:YAG lasers. Appl Opt 43:2944–2947

    Google Scholar 

  144. Yu HH, Zhang HJ, Wang ZP, Wang JY, Yu YG, Zhang XY et al (2009) Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector. Appl Phys Lett 94:041126

    Google Scholar 

  145. Saiki T, Motokoshi S, Imasaki K, Fujioka K, Yoshida H, Fujita H et al (2009) Nd3+- and Cr3+-doped uttrium aluminum garnet ceramic pulse laser using Cr4+-doped yttrium aluminum garnet crystal passive Q-switch. Jpn J Appl Phys 48:122501

    Google Scholar 

  146. Lupei V, Lupei A, Ionitamanzatu V, Georgescu S, Domsa F (1983) Combined mechanical-color center passive Q-switching of neodymium lasers. Opt Commun 48:203–206

    Google Scholar 

  147. Dascalu T, Pavel N, Lupei V, Philipps G, Beck T, Weber H (1996) Investigation of a passive Q-switched, externally controlled, quasicontinuous or continuous pumped Nd:YAG laser. Opt Eng 35:1247–1251

    Google Scholar 

  148. Dascalu T, Philipps G, Weber H (1997) Investigation of a Cr4+:YAG passive Q-switch in CW pumped Nd:YAG lasers. Opt Laser Technol 29:145–149

    Google Scholar 

  149. Dascalu T, Acosta-Ortiz SE, Pavel N (2000) Nd : YAG laser continuous wave pumped, Q-switched by hybrid “passive-active” methods. Rev Mex Fis 46:320–328

    Google Scholar 

  150. Omatsu T, Minassian A, Damzen MJ (2009) Passive Q-switching of a diode-side-pumped Nd doped 1.3 μm ceramic YAG bounce laser. Opt Commun 282:4784–4788

    Google Scholar 

  151. Li P, Chen XH, Zhang HN, Wang QP (2011) Diode-end-pumped passively Q-switched 1319 nm Nd:YAG ceramic laser with a V3+:YAG saturable absorber. Laser Phys 21:1708–1711

    Google Scholar 

  152. Omatsu T, Miyamoto K, Okida M, Minassian A, Damzen MJ (2010) 1.3-μm passive Q-switching of a Nd-doped mixed vanadate bounce laser in combination with a V:YAG saturable absorber. Appl Phys B Lasers Opt 101:65–70

    Google Scholar 

  153. Dong J, Ueda K, Yagi H, Kaminskii AA (2008) Laser-diode pumped self-Q-switched microchip lasers. Opt Rev 15:57–74

    Google Scholar 

  154. Ren Y, Dong J (2014) Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal. Opt Commun 312:163–167

    Google Scholar 

  155. Li J, Wu YS, Pan YB, Kou HM, Shi Y, Guo JK (2008) Densification and microstructure evolution of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser. Ceram Int 34:1675–1679

    Google Scholar 

  156. Li J, Wu YS, Pan YB, Guo JK (2006) Fabrication of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser. J Non-Cryst Solids 352:2404–2407

    Google Scholar 

  157. Ling WJ, Zhang SG, Zhang MX, Dong Z, Li K, Zuo YY et al (2010) High power continuous-wave actively mode-locked diode-pumped Nd:YAG laser. Chin Phys Lett 27:114202

    Google Scholar 

  158. Shcherbakov AS, Kosarsky AY, Moreno Zarate P, Campos Acosta J, Il’in YV, Tarasov IS (2011) Characterization of the train-average time-frequency parameters inherent in the low-power picosecond optical pulses generated by the actively mode-locked semiconductor laser with an external single-mode fiber cavity. Optik 122:136–141

    Google Scholar 

  159. Wojcik AK, Malara P, Blanchard R, Mansuripur TS, Capasso F, Belyanin A (2013) Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers. Appl Phys Lett 103

    Google Scholar 

  160. Yin K, Zhang BB, Yang WQ, Chen H, Chen SP, Hou J (2014) Flexible picosecond thulium-doped fiber laser using the active mode-locking technique. Opt Lett 39:4259–4262

    Google Scholar 

  161. Zhao J, Zhao SZ, Li K, Kong FM, Zhang G (2011) Optimization of passively Q-switched and mode-locked laser with Cr4+:YAG saturable absorber. Opt Commun 284:1648–1651

    Google Scholar 

  162. Yang L, Feng B, Zhang Z, Gaebler V, Liu B, Eichler HJ (2003) Low mode-locking saturation intensity of co-doped Nd3+, Cr4+:YAG crystal as saturable absorber. Opt Mater 22:59–63

    Google Scholar 

  163. Yang L, Feng BH, Zhang ZG, Gaebler V, Liu BN, Eichler HJ et al (2002) Self-mode-locking in a diode-pumped self-Q-switched Nd3+, Cr4+:YAG laser. Chin Phys Lett 19:1450–1452

    Google Scholar 

  164. Tan WD, Chen FM, Knize RJ, Zhang J, Tang DY, Li LJ (2011) Passive mode locking of ceramic Nd: YAG using (7,5) semiconducting single walled carbon nanotubes. Opt Mater 33:679–683

    Google Scholar 

  165. Tan WD, Su CY, Knize RJ, Xie GQ, Li LJ, Tang DY (2010) Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber. Appl Phys Lett 96:031106

    Google Scholar 

  166. Guo L, Hou W, Zhang HB, Sun ZP, Cui DF, Xu ZY et al (2005) Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror. Opt Express 13:4085–4089

    Google Scholar 

  167. Wisdom JA, Hum DS, Digonnet MJF, Ikesue A, Fejer MM, Byer RL (2007) 2.6-watt average-power mode-locked ceramic Nd:YAG laser. In: Jiang S, Digonnet MJF (eds) Optical components and materials IV, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 6469:C4690

    Google Scholar 

  168. Martin-Rodriguez E, Molina P, Benayas A, Bausa LE, Garcia Sole J, Jaque D (2009) Suppression of Q-switching instabilities in a passively mode-locked Nd:Y3Al5O12 ceramic laser. Opt Mater 31:725–728

    Google Scholar 

  169. Sato Y, Saikawa J, Taira T, Ikesue A (2007) Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser. Opt Mater 29:1277–1282

    Google Scholar 

  170. Okada H, Tanaka M, Kiriyama H, Nakai Y, Ochi Y, Sugiyama A et al (2010) Laser ceramic materials for subpicosecond solid-state lasers using Nd3+-doped mixed scandium garnets. Opt Lett 35:3048–3050

    Google Scholar 

  171. Xie GQ, Tang DY, Tan WD, Luo H, Zhang HJ, Yu HH et al (2009) Subpicosecond pulse generation from a Nd:CLNGG disordered crystal laser. Opt Lett 34:103–105

    Google Scholar 

  172. Luo H, Tang DY, Xie GQ, Tan WD, Zhang HJ, Yu HH (2009) Diode-pumped passively mode-locked Nd:CLNGG laser. Opt Commun 282:291–293

    Google Scholar 

  173. Xie GQ, Qian LJ, Yuan P, Tang DY, Tan WD, Yu HH et al (2010) Generation of 534 fs pulses from a passively mode-locked Nd:CLNGG-CNGG disordered crystal hybrid laser. Laser Phys Lett 7:483–486

    Google Scholar 

  174. Lupei V, Lupei A, Gheorghe C, Gheorghe L, Achim A, Ikesue A (2012) Crystal field disorder effects in the optical spectra of Nd3+ and Yb3+-doped calcium lithium niobium gallium garnets laser crystals and ceramics. J Appl Phys 112:063110

    Google Scholar 

  175. Xie GQ, Tang DY, Kong J, Qian LJ (2007) Passive mode-locking of a Nd:YAG ceramic laser by optical interference modulation in a GaAs wafer. Opt Express 15:5360–5365

    Google Scholar 

  176. Zhang WX, Zhou J, Liu WB, Li J, Wang L, Jiang BX et al (2010) Fabrication, properties and laser performance of Ho:YAG transparent ceramic. J Alloy Compd 506:745–748

    Google Scholar 

  177. Chen H, Shen DY, Zhang J, Yang H, Tang DY, Zhao T et al (2011) In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm. Opt Lett 36:1575–1577

    Google Scholar 

  178. Zhao T, Chen H, Shen DY, Wang Y, Yang XF, Zhang J et al (2013) Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers. Opt Mater 35:712–714

    Google Scholar 

  179. Yao BQ, Cui Z, Duan XM, Shen YJ, Wang J, Du YQ (2014) A graphene-based passively Q-switched Ho:YAG laser. Chin Phys Lett 31:074202

    Google Scholar 

  180. Zhao T, Wang Y, Chen H, Shen D (2014) Graphene passively Q-switched Ho:YAG ceramic laser. Appl Phys B Lasers Opt 116:947–950

    Google Scholar 

  181. Newburgh GA, Word-Daniels A, Michael A, Merkle LD, Ikesue A, Dubinskii M (2011) Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 μm laser. Opt Express 19:3604–3611

    Google Scholar 

  182. Ter-Gabrielyan N, Merkle LD, Kupp ER, Messing GL, Dubinskii M (2010) Efficient resonantly pumped tape cast composite ceramic Er:YAG laser at 1645 nm. Opt Lett 35:922–924

    Google Scholar 

  183. Shen DY, Chen H, Qin XP, Zhang J, Tang DY, Yang XF et al (2011) Polycrystalline ceramic Er:YAG laser in-band pumped. Appl Phys Express 4:052701

    Google Scholar 

  184. Zhang C, Shen DY, Wang Y, Qian LJ, Zhang J, Qin XP et al (2011) High-power polycrystalline Er:YAG ceramic laser at 1617 nm. Opt Lett 36:4767–4769

    Google Scholar 

  185. Ter-Gabrielyan N, Merkle LD, Ikesue A, Dubinskii M (2008) Ultralow quantum-defect eye-safe Er:Sc2O3 laser. Opt Lett 33:1524–1526

    Google Scholar 

  186. Sanamyan T, Simmons J, Dubinskii M (2010) Er3+-doped Y2O3 ceramic laser at similar to 2.7 μm with direct diode pumping of the upper laser level. Laser Phys Lett 7:206–209

    Google Scholar 

  187. Sanamyan T, Simmons J, Dubinskii M (2010) Efficient cryo-cooled 2.7-μm Er3+:Y2O3 ceramic laser with direct diode pumping of the upper laser level. Laser Phys Lett 7:569–572

    Google Scholar 

  188. Sanamyan T, Kanskar M, Xiao Y, Kedlaya D, Dubinskii M (2011) High power diode-pumped 2.7-μm Er3+:Y2O3 laser with nearly quantum defect-limited efficiency. Opt Express 19:A1082–A1087

    Google Scholar 

  189. Cheng X-J, Xu J-Q, Zhang W-X, Jiang B-X, Pan Y-B (2009) End-pumped Tm:YAG ceramic slab lasers. Chin Phys Lett 26:074204

    Google Scholar 

  190. Zhang WX, Pan YB, Zhou J, Liu WB, Li J, Jiang BX et al (2009) Diode-pumped Tm:YAG ceramic laser. J Am Ceram Soc 92:2434–2437

    Google Scholar 

  191. Zou YW, Zhang YD, Zhong X, Wei ZY, Zhang WX, Jiang BX et al (2010) Efficient Tm:YAG ceramic laser at 2 μm. Chin Phys Lett 27:074213

    Google Scholar 

  192. Zhang SY, Wang X, Kong WJ, Yang QL, Xu JQ, Jiang BX et al (2013) Efficient Q-switched Tm:YAG ceramic slab laser pumped by a 792 nm fiber laser. Opt Commun 286:288–290

    Google Scholar 

  193. Zhang SY, Wang MJ, Xu L, Wang Y, Tang YL, Cheng XJ et al (2011) Efficient Q-switched Tm:YAG ceramic slab laser. Opt Express 19:727–732

    Google Scholar 

  194. Gallian A, Fedorov VV, Mirov SB, Badikov VV, Galkin SN, Voronkin EF et al (2006) Hot-pressed ceramic Cr2+:ZnSe gain-switched laser. Opt Express 14:11694–11701

    Google Scholar 

  195. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48

    Google Scholar 

  196. Dericioglu AF, Kagawa Y (2003) Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4. J Eur Ceram Soc 23:951–959

    Google Scholar 

  197. Ramirez MO, Wisdom J, Li H, Aung YL, Stitt J, Messing GL et al (2008) Three-dimensional grain boundary spectroscopy in transparent high power ceramic laser materials. Opt Express 16:5965–5973

    Google Scholar 

  198. Ikesue A, Yoshida K, Yamamoto T, Yamaga I (1997) Optical scattering centers in polycrystalline Nd:YAG laser. J Am Ceram Soc 80:1517–1522

    Google Scholar 

  199. Zhang WX, Pan YB, Zhou J, Liu WB, Li J, Zou YW et al (2011) Preparation and characterization of transparent Tm:YAG ceramics. Ceram Int 37:1133–1137

    Google Scholar 

  200. Wang Y, Shen DY, Chen H, Zhang J, Qin XP, Tang DY et al (2011) Highly efficient Tm:YAG ceramic laser resonantly pumped at 1617 nm. Opt Lett 36:4485–4487

    Google Scholar 

  201. Antipov OL, Golovkin SY, Gorshkov ON, Zakharov NG, Zinovev AP, Kasatkin AP et al (2011) Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics. Quantum Electron 41:863–868

    Google Scholar 

  202. Chenais S, Druon F, Forget S, Balembois F, Georges P (2006) On thermal effects in solid-state lasers: the case of ytterbium-doped materials. Prog Quantum Electron 30:89–153

    Google Scholar 

  203. Takaichi K, Yagi H, Lu J, Shirakawa A, Ueda K, Yanagitani T et al (2003) Yb3+-doped Y3Al5O12 ceramics—a new solid-state laser material. Phys Status Solidi A Appl Res 200:R5–R7

    Google Scholar 

  204. Dong J, Shirakawa A, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2006) Efficient Yb3+:Y3Al5O12 ceramic microchip lasers. Appl Phys Lett 89:091114

    Google Scholar 

  205. Pirri A, Alderighi D, Toci G, Vannini M (2009) High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser. Opt Express 17:23344–23349

    Google Scholar 

  206. Pirri A, Alderighi D, Toci G, Vannini M (2010) A Ceramic Based Yb3+:YAG Laser. Laser Phys 20:931–935

    Google Scholar 

  207. Hao Q, Li WX, Pan HF, Zhang XY, Jiang BX, Pan YB et al (2009) Laser-diode pumped 40-W Yb:YAG ceramic laser. Opt Express 17:17734–17738

    Google Scholar 

  208. Nakamura S, Matsubara Y, Ogawa T, Wada S (2008) High-power high-efficiency Yb3+-doped Y3Al5O12 ceramic laser at room temperature. Jpn J Appl Phys 47:2149–2151

    Google Scholar 

  209. Nakamura S, Yoshioka H, Matsubara Y, Ogawa T, Wada S (2008) Efficient tunable Yb:YAG ceramic laser. Opt Commun 281:4411–4414

    Google Scholar 

  210. Cai H, Zhou J, Zhao HM, Qi YF, Lou QH, Dong JX et al (2008) Continuous-wave and Q-switched performance of an Yb:YAG/YAG composite thin disk ceramic laser pumped with 970-nm laser diode. Chin Opt Lett 6:852–854

    Google Scholar 

  211. Taira T (2007) RE3+-ion-doped YAG ceramic lasers. IEEE J Sel Top Quantum Electron 13:798–809

    Google Scholar 

  212. Tsunekane M, Taira T (2005) High-power operation of diode edge-pumped, glue-bonded, composite Yb:Y3AI5O12 microchip laser with ceramic, undoped YAG pump light-guide. Jpn J Appl Phys Part 2 Lett Expr Lett 44:L1164–L1167

    Google Scholar 

  213. Tsunekane M, Taira T (2007) High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser. Appl Phys Lett 90:121101

    Google Scholar 

  214. Giesen A, Speiser J (2007) Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE J Sel Top Quantum Electron 13:598–609

    Google Scholar 

  215. Mende J, Spindler G, Speiser J, Giesen A (2009) Concept of neutral gain modules for power scaling of thin-disk lasers. Appl Phys B Lasers Opt 97:307–315

    Google Scholar 

  216. Petermann K, Fagundes-Peters D, Johannsen J, Mond M, Peters V, Romero JJ et al (2005) Highly Yb-doped oxides for thin-disc lasers. J Cryst Growth 275:135–140

    Google Scholar 

  217. Latham WP, Lobad A, Newell TC, Stalnaker D (2010) 6.5 kW, Yb:YAG ceramic thin disk laser. In: Phipps CR (ed) International symposium on high power laser ablation 2010, pp 758–764

    Google Scholar 

  218. Nakamura S, Yoshioka H, Ogawa T, Wada S (2009) Broadly tunable Yb3+-doped Y3Al5O12 ceramic laser at room temperature. Jpn J Appl Phys 48:060205

    Google Scholar 

  219. Dong J, Shirakawa A, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2007) Laser-diode pumped heavy-doped Yb:YAG ceramic lasers. Opt Lett 32:1890–1892

    Google Scholar 

  220. Dong J, Ueda K, Yagi H, Kaminskii AA, Cai Z (2009) Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals. Laser Phys Lett 6:282–289

    Google Scholar 

  221. Pirri A, Toci G, Alderighi D, Vannini M (2010) Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics. Opt Express 18:17262–17272

    Google Scholar 

  222. Chani VI, Boulon G, Zhao W, Yanagida T, Yoshikawa A (2010) Correlation between segregation of rare earth dopants in melt crystal growth and ceramic processing for optical applications. Jpn J Appl Phys 49:075601

    Google Scholar 

  223. Brandt C, Fredrich-Thornton ST, Petermann K, Huber G (2011) Photoconductivity in Yb-doped oxides at high excitation densities. Appl Phys B Lasers Opt 102:765–768

    Google Scholar 

  224. Bisson JF, Kouznetsov D, Ueda K, Fredrich-Thornton ST, Petermann K, Huber G (2007) Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics. Appl Phys Lett 90:201901

    Google Scholar 

  225. Luo D, Zhang J, Xu C, Lin H, Yang H, Zhu H et al (2013) Mode-locked Yb:LuAG ceramics laser. Phys Status Solidi C 10(6):967–968

    Google Scholar 

  226. Luo D, Zhang J, Xu C, Yang H, Lin H, Zhu H et al (2012) Yb:LuAG laser ceramics: a promising high power laser gain medium. Opt Mater Expr 2:1425–1431

    Google Scholar 

  227. Xu CW, Luo DW, Zhang J, Yang H, Qin XP, Tan WD et al (2012) Diode pumped highly efficient Yb:Lu3Al5O12 ceramic laser. Laser Phys Lett 9:30–34

    Google Scholar 

  228. Furuse H, Yasuhara R, Hiraga K (2014) Thermo-optic properties of ceramic YAG at high temperatures. Opt Mater Expr 4:1794–1799

    Google Scholar 

  229. Lu JR, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K et al (2002) Yb3+:Y2O3 ceramics—a novel solid-state laser material. Jpn J Appl Phys Part 2 Lett 41:L1373–L1375

    Google Scholar 

  230. Kong J, Tang DY, Chan CC, Lu J, Ueda K, Yagi H et al (2007) High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping. Opt Lett 32:247–249

    Google Scholar 

  231. Kong J, Lu J, Takaichi K, Uematsu T, Ueda K, Tang DY et al (2003) Diode-pumped Yb:Y2O3 ceramic laser. Appl Phys Lett 82:2556–2558

    Google Scholar 

  232. Kong J, Tang DY, Lu J, Ueda K, Yagi H, Yanagitani T (2004) Passively mode-locked Yb:Y2O3 ceramic laser with a GaAs-saturable absorber mirror. Opt Commun 237:165–168

    Google Scholar 

  233. Kong J, Tang DY, Zhao B, Lu J, Ueda K, Yagi H et al (2005) Study on the diode-pumped Yb:Y2O3 ceramic laser. In: 2005 IEEE Pacific Rim conference on lasers and electro-optics, pp 142–143

    Google Scholar 

  234. Pirri A, Toci G, Ciofini M, Lapucci A, Gizzi LA, Labate L et al (2014) Thermal lens measurements in Yb-doped YAG, LuAG, Lu2O3, Sc2O3 ceramic lasers. In: 22nd international laser physics workshop (LPhys’13), vol 497, p 012013

    Google Scholar 

  235. Pirri A, Toci G, Vannini M (2012) Characterization and comparison of 1 % at Yb-doped Lu2O3 and Sc2O3 ceramics as laser gain media. Laser Phys 22:1851–1855

    Google Scholar 

  236. Kim WH, Baker C, Villalobos G, Frantz J, Shaw B, Lutz A et al (2011) Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers. J Am Ceram Soc 94:3001–3005

    Google Scholar 

  237. Sanghera J, Frantz J, Kim WH, Villalobos G, Baker C, Shaw B et al (2011) 10% Yb3+-Lu2O3 ceramic laser with 74 % efficiency. Opt Lett 36:576–578

    Google Scholar 

  238. Sanghera J, Kim WH, Baker C, Villalobos G, Frantz J, Shaw B et al (2011) Laser oscillation in hot pressed 10 % Yb3+:Lu2O3 ceramic. Opt Mater 33:670–674

    Google Scholar 

  239. Pirri A, Toci G, Nikl M, Vannini M (2012) High efficiency laser action of 1 % at. Yb3+:Sc2O3 ceramic. Opt Express 20:22134–22142

    Google Scholar 

  240. Pirri A, Toci G, Vannini M (2011) First laser oscillation and broad tunability of 1 at. % Yb-doped Sc2O3 and Lu2O3 ceramics. Opt Lett 36:4284–4286

    Google Scholar 

  241. Lupei A, Lupei V, Gheorghe C, Ikesue A, Osiac E (2009) Upconversion emission of RE3+ in Sc2O3 ceramic under 800 nm pumping. Opt Mater 31:744–749

    Google Scholar 

  242. Hao Q, Li WX, Zeng HP, Yang QH, Dou CG, Zhou HX et al (2008) Low-threshold and broadly tunable lasers of Yb3+-doped yttrium lanthanum oxide ceramic. Appl Phys Lett 92:211106

    Google Scholar 

  243. Bourdet GL, Casagrande O, Deguil-Robin N, Le Garrec B (2008) Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics. In: 5th international conference on inertial fusion sciences and applications (IFSA 2007), vol 112, p 032054

    Google Scholar 

  244. Lyberis A, Patriarche G, Gredin P, Vivien D, Mortier M (2011) Origin of light scattering in ytterbium doped calcium fluoride transparent ceramic for high power lasers. J Eur Ceram Soc 31:1619–1630

    Google Scholar 

  245. Akchurin MS, Basiev TT, Demidenko AA, Doroshenko ME, Fedorov PP, Garibin EA et al (2013) CaF2: Yb laser ceramics. Opt Mater 35:444–450

    Google Scholar 

  246. Basiev TT, Doroshenko ME, Fedorov PP, Konyushkin VA, Kuznetsov SV, Osiko VV et al (2008) Efficient laser based on CaF2-SrF2-YbF3 nanoceramics. Opt Lett 33:521–523

    Google Scholar 

  247. Dong J, Shirakawa A, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2007) Near-diffraction-limited passively Q-switched Yb:Y3Al5O12 ceramic lasers with peak power >150 kW. Appl Phys Lett 90:131105

    Google Scholar 

  248. Dong J, Shirakawa A, Ueda K, Yagi H, Yanagitani T, Kaminskii AA (2007) Ytterbium and chromium doped composite Y3Al5O12 ceramics self-Q-switched laser. Appl Phys Lett 90:191106

    Google Scholar 

  249. Yoshioka H, Nakamura S, Ogawa T, Wada S (2009) Diode-pumped mode-locked Yb:YAG ceramic laser. Opt Express 17:8919–8925

    Google Scholar 

  250. Zhou BB, Wei ZY, Zou YW, Zhang YD, Zhong X, Bourdet GL et al (2010) High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser. Opt Lett 35:288–290

    Google Scholar 

  251. Yoshioka H, Nakamura S, Ogawa T, Wada S (2010) Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity. Opt Express 18:1479–1486

    Google Scholar 

  252. Saikawa J, Sato Y, Taira T, Ikesue A (2004) Passive mode locking of a mixed garnet Yb:Y3ScAl4O12 ceramic laser. Appl Phys Lett 85:5845–5847

    Google Scholar 

  253. Tokurakawa M, Kurokawa H, Shirakawa A, Ueda K, Yagi H, Yanagitani T et al (2010) Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb3+:(YGd2)(Sc2Al2Ga)O12 ceramics. Opt Express 18:4390–4395

    Google Scholar 

  254. Senatsky Y, Shirakawa A, Sato Y, Hagiwara J, Lu J, Ueda K et al (2004) Nonlinear refractive index of ceramic laser media and perspectives of their usage in a high-power laser-driver. Laser Phys Lett 1:500–506

    Google Scholar 

  255. Tokurakawa M, Takaichi K, Shirakawa A, Ueda K, Yagi H, Hosokawa S et al (2006) Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser. Opt Express 14:12832–12838

    Google Scholar 

  256. Tokurakawa M, Takaichi K, Shirakawa A, Ueda K, Yagi H, Yanagitani T et al (2007) Diode-pumped 188 fs mode-locked Yb3+:Y2O3 ceramic laser. Appl Phys Lett 90:071101

    Google Scholar 

  257. Xie GQ, Tang DY, Zhao LM, Qian LJ, Ueda K (2007) High-power self-mode-locked Yb:Y2O3 ceramic laser. Opt Lett 32:2741–2743

    Google Scholar 

  258. Tokurakawa M, Shirakawa A, Ueda K-i, Yagi H, Yanagitani T, Kaminskii AA (2007) Diode-pumped sub-100 fs Kerr-lens mode-locked Yb3+:Sc2O3 ceramic laser. Opt Lett 32:3382–3384

    Google Scholar 

  259. Tokurakawa M, Shirakawa A, K-i Ueda, Yagi H, Hosokawa S, Yanagitani T et al (2008) Diode-pumped 65 fs Kerr-lens mode-locked Yb3+:Lu2O3 and nondoped Y2O3 combined ceramic laser. Opt Lett 33:1380–1382

    Google Scholar 

  260. Tokurakawa M, Shirakawa A, Ueda K, Yagi H, Noriyuki M, Yanagitani T et al (2009) Diode-pumped ultrashort-pulse generation based on Yb3+:Sc2O3 and Yb3+:Y2O3 ceramic multi-gain-media oscillator. Opt Express 17:3353–3361

    Google Scholar 

  261. Pearce S, Yasuhara R, Yoshida A, Kawanaka J, Kawashima T, Kan H (2009) Efficient generation of 200 mJ nanosecond pulses at 100 Hz repetition rate from a cryogenic cooled Yb:YAG MOPA system. Opt Commun 282:2199–2203

    Google Scholar 

  262. Takeuchi Y, Kawanaka J, Yoshida A, Yasuhara R, Kawashima T, Kan H et al (2011) Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror. Appl Phys B Lasers Opt 104:29–32

    Google Scholar 

  263. Rodenas A, Torchia GA, Lifante G, Cantelar E, Lamela J, Jaque F et al (2009) Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl Phys B Lasers Opt 95:85–96

    Google Scholar 

  264. Rodenas A, Zhou GY, Jaque D, Gu M (2008) Direct laser writing of three-dimensional photonic structures in Nd:yttrium aluminum garnet laser ceramics. Appl Phys Lett 93:151104

    Google Scholar 

  265. Torchia GA, Meilan PF, Rodenas A, Jaque D, Mendez C, Roso L (2007) Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics. Opt Express 15:13266–13271

    Google Scholar 

  266. Torchia GA, Rodenas A, Benayas A, Cantelar E, Roso L, Jaque D (2008) Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides. Appl Phys Lett 92:111103

    Google Scholar 

  267. Benayas A, Silva WF, Rodenas A, Jacinto C, Vazquez de Aldana J, Chen F et al (2011) Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: A study of thermal and non-thermal regimes. Appl Phys A Mater Sci Process 104:301–309

    Google Scholar 

  268. Choudhury D, Rodenas A, Paterson L, Diaz F, Jaque D, Kar AK (2013) Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl Phys Lett 103:041101

    Google Scholar 

  269. Rodenas A, Benayas A, Macdonald JR, Zhang J, Tang DY, Jaque D et al (2011) Direct laser writing of near-IR step-index buried channel waveguides in rare earth doped YAG. Opt Lett 36:3395–3397

    Google Scholar 

  270. Benayas A, Dong NN, Yao YC, Chen F, Bettiol AA, Jaque D (2011) Thermal optimization and erasing of Nd:YAG proton beam written waveguides. Opt Lett 36:3278–3280

    Google Scholar 

  271. Benayas A, Silva WF, Jacinto C, Cantelar E, Lamela J, Jaque F et al (2010) Thermally resistant waveguides fabricated in Nd:YAG ceramics by crossing femtosecond damage filaments. Opt Lett 35:330–332

    Google Scholar 

  272. Dong NN, Benayas A, Jaque D, Tan Y, Chen F (2011) Fluorescence-quenching free channel waveguides in Yb:YAG ceramics by carbon ion implantation. J Lightwave Technol 29:1460–1464

    Google Scholar 

  273. Ren YY, Dong NN, Tan Y, Guan J, Chen F, Lu QM (2010) Continuous wave laser generation in proton implanted Nd:GGG planar waveguides. J Lightwave Technol 28:3578–3581

    Google Scholar 

  274. Ren YY, Tan Y, Chen F, Jaque D, Zhang HJ, Wang JY et al (2010) Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation. Opt Express 18:16258–16263

    Google Scholar 

  275. Tan Y, Luan QF, Liu FQ, Akhmadaliev S, Zhou SQ, Chen F (2013) Swift carbon ion irradiated Nd:YAG ceramic optical waveguide amplifier. Opt Express 21:13992–13997

    Google Scholar 

  276. Tan Y, Zhang C, Chen F, Liu FQ, Jaque D, Lu QM (2011) Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation. Appl Phys B Lasers Opt 103:837–840

    Google Scholar 

  277. Yao YC, Tan Y, Dong NN, Chen F, Bettiol AA (2010) Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing. Opt Express 18:24516–24521

    Google Scholar 

  278. Tan Y, Chen F (2010) Proton-implanted optical channel waveguides in Nd:YAG laser ceramics. J Phys D Appl Phys 43:075105

    Google Scholar 

  279. Xu DY, Wang YY, Li HF, Yao JQ, Tsang YH (2007) 104 W high stability green laser generation by using diode laser pumped intracavity frequency-doubling Q-switched composite ceramic Nd:YAG laser. Opt Express 15:3991–3997

    Google Scholar 

  280. Kaminskii AA, Ueda K, Eichler HJ, Bagaev SN, Takaichi K, Lu J et al (2004) Observation of nonlinear lasing χ(3)-effects in highly transparent nanocrystalline Y2O3 and Y3Al5O12 ceramics. Laser Phys Lett 1:6–11

    Google Scholar 

  281. Yanagida T, Fujimoto Y, Yagi H, Yanagitani T, Sugiyama M, Yamaji A et al (2013) Scintillation properties of transparent ceramics for Nd doped (YGd2)(Sc2Al2Ga)O12. Opt Mater 35:788–792

    Google Scholar 

  282. Kaminskii AA, Bagaev SN, Eichler HJ, Ueda K, Takaichi K, Shirakawa A et al (2006) Observation of high-order stokes and anti-stokes χ(3)-generation in highly transparent laser-host Lu2O3 ceramics. Laser Phys Lett 3:310–313

    Google Scholar 

  283. Kaminskii AA, Rhee H, Eichler HJ, Ueda K, Takaichi K, Shirakawa A et al (2008) New nonlinear-laser effects in crystalline fine-grained ceramics based on cubic Sc2O3 and Lu2O3 oxides: second and third harmonic generation, and cascaded self-sum-frequency mixing in UV spectral region. Laser Phys Lett 5:109–113

    Google Scholar 

  284. Shoji I, Sato Y, Kurimura S, Lupei V, Taira T, Ikesue A et al (2002) Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Opt Lett 27:234–236

    Google Scholar 

  285. Shoji I, Taira T, Ikesue A (2007) Thermally-induced-birefringence effects of highly Nd3+-doped Y3Al5O12 ceramic lasers. Opt Mater 29:1271–1276

    Google Scholar 

  286. Kagan MA, Khazanov EA (2003) Compensation for thermally induced birefringence in polycrystalline ceramic active elements. Quantum Electron 33:876–882

    Google Scholar 

  287. Khazanov EA (2002) Thermally induced birefringence in Nd:YAG ceramics. Opt Lett 27:716–718

    Google Scholar 

  288. Ostermeyer M, Mudge D, Veitch PJ, Munch J (2006) Thermally induced birefringence in Nd:YAG slab lasers. Appl Opt 45:5368–5376

    Google Scholar 

  289. Mukhin IB, Palashov OV, Khazanov EA, Ikesue A, Aung YL (2005) Experimental study of thermally induced depolarization in Nd:YAG ceramics. Opt Express 13:5983–5987

    Google Scholar 

  290. Shin JS, Park S, Kong HJ (2010) Compensation of the thermally induced depolarization in a double-pass Nd:YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror. Opt Commun 283:2402–2405

    Google Scholar 

  291. Yasuhara R, Furuse H (2013) Thermally induced depolarization in TGG ceramics. Opt Lett 38:1751–1753

    Google Scholar 

  292. Snetkov IL, Soloviev AA, Khazanov EA (2009) Study of a thermal lens in thin laser-ceramics discs. Quantum Electron 39:302–308

    Google Scholar 

  293. Soloviev A, Snetkov I, Zelenogorsky V, Kozhevatov I, Palashov O, Khazanov E (2008) Experimental study of thermal lens features in laser ceramics. Opt Express 16:21012–21021

    Google Scholar 

  294. Kawai R, Miyasaka Y, Otsuka K, Ohtomo T, Narita T, Ko JY et al (2004) Oscillation spectra and dynamic effects in a highly-doped microchip Nd:YAG ceramic laser. Opt Express 12:2293–2302

    Google Scholar 

  295. Otsuka K, Narita T, Miyasaka Y, Lin CC, Ko JY, Chu SC (2006) Nonlinear dynamics in thin-slice Nd:YAG ceramic lasers: coupled local-mode laser model. Appl Phys Lett 89:081117

    Google Scholar 

  296. Ma QL, Bo Y, Zong N, Peng QJ, Cui DF, Pan YB et al (2010) 108 W Nd YAG ceramic laser with birefringence compensation resonator. Opt Commun 283:5183–5186

    Google Scholar 

  297. Otsuka K, Ohtomo T (2008) Polarization properties of laser-diode-pumped micro-grained Nd:YAG ceramic lasers. Laser Phys Lett 5:659–663

    Google Scholar 

  298. Parriaux O, Bisson JF, Ueda K, Tonchev S, Gamet E, Pommier JC et al (2008) Polarization control of a Yb:YAG ceramic microchip laser by constructive-interference resonant grating mirror. J Mod Opt 55:1899–1912

    Google Scholar 

  299. Thirugnanasambandam MP, Senatsky Y, Ueda K-i (2011) Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal. Opt Express 19:1905–1914

    Google Scholar 

  300. Moshe I, Jackel S, Lumer Y, Meir A, Feldman R, Shimony Y (2010) Use of polycrystalline Nd:YAG rods to achieve pure radially or azimuthally polarized beams from high-average-power lasers. Opt Lett 35:2511–2513

    Google Scholar 

  301. Thirugnanasambandam MP, Senatsky Y, Ueda K (2010) Generation of very-high order Laguerre-Gaussian modes in Yb:YAG ceramic laser. Laser Phys Lett 7:637–643

    Google Scholar 

  302. Tokunaga K, Chu SC, Hsiao HY, Ohtomo T, Otsuka K (2009) Spontaneous Mathieu-Gauss mode oscillation in micro-grained Nd:YAG ceramic lasers with azimuth laser-diode pumping. Laser Phys Lett 6:635–638

    Google Scholar 

  303. Thirugnanasambandam MP, Senatsky Y, Shirakawa A, Ueda K-i (2011) Multi-ring modes generation in Yb:YAG ceramic laser. Opt Mater 33:675–678

    Google Scholar 

  304. Li JL, Lin D, Zhong LX, Ueda K, Shirakawa A, Musha M et al (2009) Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output. Laser Phys Lett 6:711–714

    Google Scholar 

  305. J-l Li, K-i Ueda, Musha M, Zhong L-x, Shirakawa A (2008) Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser. Opt Lett 33:2686–2688

    Google Scholar 

  306. Huang J, Deng J, Cao Y, Weng W, Zheng H, Li J et al (2011) Passively mode-locked radially polarized laser based on ceramic Nd:YAG rod. Opt Express 19:2120–2125

    Google Scholar 

  307. Li SX, Li GQ, Zhao SZ, Wang XM, Yang KJ, Li DC et al (2014) Passively Q-switched laser performance of a composite Nd:YVO4/Nd:YVO4/Nd:YVO4 crystal with GaAs saturable absorber. Opt Quant Electron 46:1179–1186

    Google Scholar 

  308. Zhu SQ, He Q, Wang SF, Chen ZQ, Li AM, Yin H et al (2014) High average power passively Q-switched laser diode side-pumped green laser by using Nd:YAG/Cr4+:YAG/YAG composite crystal. J Laser Appl 26:032009

    Google Scholar 

  309. Jiang W, Zhu S, Chen ZQ, He Q, Chen Z, Wang S et al (2013) Green laser with V-shaped resonant cavity based on Nd:YAG/Cr4+:YAG/YAG composite crystal rod. J Appl Spectrosc 80:694–697

    Google Scholar 

  310. Meng JY, Wang HX (2011) Single diode-pumped, 1.7 ns microchip laser by Nd:YAG/Cr4+:YAG composite crystal. Laser Phys 21:79–81

    Google Scholar 

  311. Yin L, Li GQ, Zhao SZ, Li X, Cheng K, Zhang G (2011) Continuous wave and passively Q-switched laser performance of a composite crystal bonded with three Nd:YVO4 single crystals. Laser Phys 21:1151–1154

    Google Scholar 

  312. Tang F, Cao YG, Huang JQ, Guo W, Liu HG, Wang WC et al (2012) Diode- pumped multilayer Yb:YAG composite ceramic laser. Laser Phys Lett 9:564–569

    Google Scholar 

  313. Hirota K, Satomi M, Matsuyama K, Kugimiya K (1990) The solid-state single-crystal growth from Mn-Zn ferrite polycrystal with additives. Mater Res Bull 25:1453–1459

    Google Scholar 

  314. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280

    Google Scholar 

  315. Kang SJL, Park JH, Ko SY, Lee HY (2015) Solid-state conversion of single crystals: the principle and the state-of-the-art. J Am Ceram Soc 98:347–360

    Google Scholar 

  316. Sugiyama A, Fukuyama H, Sasuga T, Arisawa T, Takuma H (1998) Direct bonding of Ti:sapphire laser crystals. Appl Opt 37:2407–2410

    Google Scholar 

  317. Esposito L, Hostasa J, Piancastelli A, Toci G, Alderighi D, Vannini M et al (2014) Multilayered YAG-Yb:YAG ceramics: manufacture and laser performance. J Mater Chem C 2:10138–10148

    Google Scholar 

  318. Liu WB, Li J, Liu J, Liu BL, Fu YL, Pan YB et al (2014) Study of Yb:YAG ceramic slab with Cr4+:YAG edge cladding. Ceram Int 40:8879–8883

    Google Scholar 

  319. Kupp ER, Messing GL, Anderson JM, Gopalan V, Dumm JQ, Kraisinger C et al (2010) Co-casting and optical characteristics of transparent segmented composite Er:YAG laser ceramics. J Mater Res 25:476–483

    Google Scholar 

  320. Lebbou K, Perrodin D, Chani VI, Brenier A, Tillement O, Aloui O et al (2006) Fiber single-crystal growth from the melt for optical applications. J Am Ceram Soc 89:75–80

    Google Scholar 

  321. Yoshikawa A, Boulon G, Laversenne L, Canibano H, Lebbou K, Collombet A et al (2003) Growth and spectroscopic analysis of Yb3+-doped Y3Al5O12 fiber single crystals. J Appl Phys 94:5479–5488

    Google Scholar 

  322. Didierjean J, Castaing M, Balembois F, Georges P, Perrodin D, Fourmigue JM et al (2006) High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique. Opt Lett 31:3468–3470

    Google Scholar 

  323. Sangla D, Aubry N, Didierjean J, Perrodin D, Balembois F, Lebbou K et al (2009) Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique. Appl Phys B Lasers Opt 94:203–207

    Google Scholar 

  324. Sangla D, Martial I, Aubry N, Didierjean J, Perrodin D, Balembois F et al (2009) High power laser operation with crystal fibers. Appl Phys B Lasers Opt 97:263–273

    Google Scholar 

  325. Ikesue A, Aung YL (2007) Progress in ceramic Nd:YAG laser In: Wood GL, Dubindkii MA (eds) Laser source technology for defense and security III, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), p 55209

    Google Scholar 

  326. Aubry N, Sangla D, Mancini C, Didierjean J, Perrodin D, Fourmigue JM et al (2009) Characterizations of 0.4 and 1 mm diameter Yb:YAG single-crystal fibers grown by the micro-pulling-down method for laser applications. J Cryst Growth 311:4805–4811

    Google Scholar 

  327. Yang PZ, Deng PZ, Yin ZW, Tian YL (2000) The growth defects in Czochralski-grown Yb:YAG crystal. J Cryst Growth 218:87–92

    Google Scholar 

  328. Eakins DE, Held M, Norton MG, Bahr DF (2004) A study of fracture and defects in single crystal YAG. J Cryst Growth 267:502–509

    Google Scholar 

  329. Sangla D, Aubry N, Nehari A, Brenier A, Tillement O, Lebbou K et al (2009) Yb-doped Lu3Al5O12 fibers single crystals grown under stationary stable state for laser application. J Cryst Growth 312:125–130

    Google Scholar 

  330. Jheng DY, Hsu KY, Liang YC, Huang SL (2015) Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser. IEEE J Sel Top Quantum Electron 21:0900608

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Laser Applications. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_9

Download citation

Publish with us

Policies and ethics