Skip to main content

Grain Growth and Microstructure Development

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

The properties of a ceramics are determined by its chemical composition intrinsically and microstructure extrinsically. For ceramics with a given composition, microstructure means the overall feature, which reflects its grain size and morphology, grain size distribution, porosity, pore size and distribution, type and quality of grain boundaries, as well as the nature and distribution of second-phases, and so on. For most applications, especially optical transparency, microstructural control means to achieve full densification, narrow distribution of grain size, least contamination, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  2. German RM (2010) Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Crit Rev Solid State Mater Sci 35:263–305

    Google Scholar 

  3. Carter CB, Norton MG (2007) Ceramics materials: science and engineering. Springer, Berlin

    Google Scholar 

  4. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New York

    Google Scholar 

  5. Jung YI, Choi SY, Kang SJL (2006) Effect of oxygen partial pressure on grain boundary structure and grain growth behavior in BaTiO3. Acta Mater 54:2849–2855

    Google Scholar 

  6. Krell A (2014) Comments on “an extended hardness limit in bulk nanoceramics”. In: JA Wollmershauser, BN Feigelson, EP Gorzkowski, CT Ellis, R Goswami, SB Qadri, JG Tischler, FJ Kub, RK Everett (eds) Acta Mater, vol 69, 9–16. (Scripta Mater. 2014;92:63–64)

    Google Scholar 

  7. Wollmershauser JA, Feigelson BN, Gorzkowski EP, Ellis CT, Goswami R, Qadri SB et al (2014) Reply to comments on “an extended hardness limit in bulk nanoceramics. Acta Mater 69:9–16. (Scripta Mater. 2014;92:65–68)

    Google Scholar 

  8. Wollmershauser JA, Feigelson BN, Gorzkowski EP, Ellis CT, Goswami R, Qadri SB et al (2014) An extended hardness limit in bulk nanoceramics. Acta Mater 69:9–16

    Google Scholar 

  9. Greenwood GW (1956) The growth of disersed precipitates in solutions. Acta Metall 4:243–248

    Google Scholar 

  10. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Google Scholar 

  11. Enomoto Y, Kawasaki K, Tokuyama M (1987) Computer modeling of Ostwald ripening. Acta Metall 35:907–913

    Google Scholar 

  12. Enomoto Y, Tokuyama M, Kawasaki K (1986) Finite volume fraction effects on Ostwald ripening. Acta Metall 34:2119–2128

    Google Scholar 

  13. Wagner C (1961) Theorie der alterung von niederschlagen durch umlosen (Ostwald-reifung). Zeitschrift Fur Elektrochemie 65:581–591

    Google Scholar 

  14. Brailsford AD, Wynblatt P (1979) Dependence of Ostwald ripening kinetics on particle—volume fraction. Acta Metall 27:489–497

    Google Scholar 

  15. Davies CKL, Nash P, Stevens RN (1980) Effect of volume fraction of precipitate on Ostwald ripening. Acta Metall 28:179–189

    Google Scholar 

  16. Marqusee JA, Ross J (1984) Theory of Ostwald ripening—competitive growth and its dependence on volume fraction. J Chem Phys 80:536–543

    Google Scholar 

  17. Ardell AJ (1972) Effect of volume fraction on particle coarsening—theoretical considereations. Acta Metall 20:61–71

    Google Scholar 

  18. Davies CKL, Nash P, Stevens RN (1980) Precipitation in Ni-Co alloys, 1. Continuous precipitation. J Mater Sci 15:1521–1532

    Google Scholar 

  19. Enomoto Y, Kawasaki K, Tokuyama M (1987) The time-dependent behavior of the Ostwald ripening for the finite volume fraction. Acta Metall 35:915–922

    Google Scholar 

  20. Atkinson HV (1988) Development of grain-structure in nickel-oxide scale. Mater Sci Technol 4:1052–1063

    Google Scholar 

  21. Atkinson HV (1988) Theories of normal grain-growth in pure single-phase systems. Acta Metall 36:469–491

    Google Scholar 

  22. Burke JE, Turnbull D (1952) Recrystallinzatin and grain growth. Prog Metal Phys 3:220–292

    Google Scholar 

  23. Hillert M (1965) On theory of normal and abnormal grain growth. Acta Metall 13:227–238

    Google Scholar 

  24. Srolovitz DJ, Anderson MP, Sahni PS, Grest GS (1984) Computer simulation of grain growth, 2. Grain size distribution, topology and dynamics. Acta Metall 32:793–802

    Google Scholar 

  25. Feltham P (1957) Grain growth in metals. Acta Metall 5:97–105

    Google Scholar 

  26. Louat NP (1974) Theory of normal grain growth. Acta Metall 22:721–724

    Google Scholar 

  27. Anderson MP, Srolovitz DJ, Grest GS, Sahni PS (1984) Computer simulation of grain growth, 1. Kinetics. Acta Metall 32:783–791

    Google Scholar 

  28. Rhines FN, Craig KR, Dehoff RT (1974) Mechanism of steady-state grain growth in aluminum. Metall Trans 5:413–425

    Google Scholar 

  29. Doherty RD (1975) Mechanism of steady-state grain growth in aluminum—comment. Metall Trans A6:588–590

    Google Scholar 

  30. Weaire D, Kermode JP (1983) Computer simulation of a two-dimensional soap froth, 1. Mechod and motivation. Phil Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 48:245–259

    Google Scholar 

  31. Weaire D, Kermode JP (1983) The evolution of the structure of a two-dimensional soap froth. Phil Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 47:L29–L31

    Google Scholar 

  32. Weaire D, Kermode JP (1984) Computer simulation of a two-dimensional soap froth, 2. Analysis of results. Phil Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 50:379–395

    Google Scholar 

  33. Grest GS, Srolovitz DJ, Anderson MP (1985) Computer simulation of grain growth, 4. Anisotropic grain-boundary energies. Acta Metall 33:509–520

    Google Scholar 

  34. Srolovitz DJ, Anderson MP, Grest GS, Sahni PS (1984) Computer simulation of grain growth, 3. Influence of a particle dispersion. Acta Metall 32:1429–1438

    Google Scholar 

  35. Srolovitz DJ, Grest GS, Anderson MP (1985) Computer simulation of grain growth, 5. Abnormal grain growth. Acta Metall 33:2233–2247

    Google Scholar 

  36. Thompson CV, Frost HJ, Spaepen F (1987) The relative rates of secondary and normal grain growth. Acta Metall 35:887–890

    Google Scholar 

  37. Rollett AD, Srolovitz DJ, Anderson MP (1989) Simulation and theory of abnormal grain growth: anisotropic grain-boundary energies and mobilities. Acta Metall 37:1227–1240

    Google Scholar 

  38. Yang W, Chen LQ, Messing GL (1995) Computer-simulation of anisotropic grain growth. Mater Sci Eng A Struct Mater Prop Microstruct Process 195:179–187

    Google Scholar 

  39. Kunaver U, Kolar D (1993) Computer-simulation of anisotropic grain-growth in ceramics. Acta Metall Mater 41:2255–2263

    Google Scholar 

  40. Kunaver U, Kolar D (1998) Three-dimensional computer simulation of anisotropic grain growth in ceramics. Acta Mater 46:4629–4640

    Google Scholar 

  41. Bateman CA, Bennison SJ, Harmer MP (1989) Mechanism for the role of magensia in the sintering of alumina containing small amounts of a liquid-phase. J Am Ceram Soc 72:1241–1244

    Google Scholar 

  42. Cao JJ, MoberlyChan WJ, DeJonghe LC, Gilbert CJ, Ritchie RO (1996) In situ toughened silicon carbide with Al-B-C additions. J Am Ceram Soc 79:461–469

    Google Scholar 

  43. Becher PF, Sun EY, Plucknett KP, Alexander KB, Hsueh CH, Lin HT et al (1998) Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. J Am Ceram Soc 81:2821–2830

    Google Scholar 

  44. Sun EY, Becher PF, Plucknett KP, Hsueh CH, Alexander KB, Waters SB et al (1998) Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives. J Am Ceram Soc 81:2831–2840

    Google Scholar 

  45. Huang T, Rahaman MN, Mah TI, Parthasarathay TA (2000) Effect of SiO2 and Y2O3 additives on the anisotropic grain growth of dense mullite. J Mater Res 15:718–726

    Google Scholar 

  46. Gonenli IE, Messing GL (2001) Texturing of mullite by templated grain growth with aluminum borate whiskers. J Eur Ceram Soc 21:2495–2501

    Google Scholar 

  47. Hong SH, Messing GL (1999) Development of textured mullite by templated grain growth. J Am Ceram Soc 82:867–872

    Google Scholar 

  48. MacLaren I, Cannon RM, Gulgun MA, Voytovych R, Popescu-Pogrion N, Scheu C et al (2003) Abnormal grain growth in alumina: synergistic effects of yttria and silica. J Am Ceram Soc 86:650–659

    Google Scholar 

  49. Seabaugh MM, Kerscht IH, Messing GL (1997) Texture development by templated grain growth in liquid-phase-sintered alpha-alumina. J Am Ceram Soc 80:1181–1188

    Google Scholar 

  50. Amorin H, Ursic H, Ramos P, Holc J, Moreno R, Chateigner D et al (2014) Pb(Mg1/3Nb2/3)O3-PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. J Am Ceram Soc 97:420–426

    Google Scholar 

  51. Chang YF, Poterala S, Yener D, Messing GL (2013) Fabrication of highly textured fine-grained α-alumina by templated grain growth of nanoscale precursors. J Am Ceram Soc 96:1390–1397

    Google Scholar 

  52. Snel MD, van Hoolst J, de Wilde AM, Mertens M, Snijkers F, Luyten J (2009) Influence of tape cast parameters on texture formation in alumina by templated grain growth. J Eur Ceram Soc 29:2757–2763

    Google Scholar 

  53. Kimura T, Yi Y, Sakurai F (2010) Mechanisms of texture development in lead-free piezoelectric ceramics with perovskite structure made by the templated grain growth process. Materials 3:4965–4978

    Google Scholar 

  54. Ma S, Fuh JYH, Zhang YF, Lu L (2010) Synthesis of anisotropic lead titanate powders for templated grain growth of textured piezoelectric ceramics. Surf Rev Lett 17:159–164

    Google Scholar 

  55. Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S, Brahmaroutu B et al (2004) Templated grain growth of textured piezoelectric ceramics. Crit Rev Solid State Mater Sci 29:45–96

    Google Scholar 

  56. Richter T, Schuh C, Moos R, Suvaci E (2008) Single crystal growth and texturing of lead-based piezoelectric ceramics via templated grain growth process. Funct Mater Lett 1:127–132

    Google Scholar 

  57. Khan A, Gorzkowski EP, Scotch AM, Leite ER, Li T, Chan HM et al (2003) Influence of excess PbO additions on 111 single-crystal growth of Pb(Mg1/3Nb2/3)O3-35 mol% PbTiO3 by seeded polycrystal conversion. J Am Ceram Soc 86:2176–2181

    Google Scholar 

  58. Khan A, Meschke FA, Li T, Scotch AM, Chan HM, Harmer MP (1999) Growth of Pb(Mg1/3Nb2/3)O3-35 mol% PbTiO3 single crystals from (111) substrates by seeded polycrystal conversion. J Am Ceram Soc 82:2958–2962

    Google Scholar 

  59. Li T, Scotch AM, Chan HM, Harmer MP, Park SE, Shrout TR et al (1998) Single crystals of Pb(Mg1/3Nb2/3)O3-35 mol% PbTiO3 from polycrystalline precursors. J Am Ceram Soc 81:244–248

    Google Scholar 

  60. Yamamoto T, Sakuma T (1994) Fabrication of barium titanate single-crystals by solid-state grain-growth. J Am Ceram Soc 77:1107–1109

    Google Scholar 

  61. Ikesue A, Aung YL, Yoda T, Nakayama S, Kamimura T (2007) Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt Mater 29:1289–1294

    Google Scholar 

  62. Bagayev SN, Kaminskii AA, Kopylov YL, Kotelyanskii IM, Kravchenko VB, Luzanov VA (2013) Single crystal growth in YAG ceramics of different stoichiometry. Opt Mater 35:757–760

    Google Scholar 

  63. Maxim I, Irina V, Vladimir K (2012) Growth of optical grade yttrium oxide single crystal via ceramic technology. Opt Mater 34:955–958

    Google Scholar 

  64. Ikesue A, Aung YL, Lupei V (2014) Ceramic lasers. Cambridge University Press, Cambridge

    Google Scholar 

  65. Li Z, Nian H, Feng T, Jiang D (2014) Solid-state grain growth of garnet single crystals of complex composition. Ceram Int 40:10193–10196

    Google Scholar 

  66. Bagayev SN, Kaminskii AA, Kopylov YL, Kotelyanskii IM, Kravchenko VB (2012) Simple method to join YAG ceramics and crystals. Opt Mater 34:951–954

    Google Scholar 

  67. Scott C, Kaliszewski M, Greskovich C, Levinson L (2002) Conversion of polycrystalline Al2O3 into single-crystal sapphire by abnormal grain growth. J Am Ceram Soc 85:1275–1280

    Google Scholar 

  68. Thompson GS, Henderson PA, Harmer MP, Wei GC, Rhodes WH (2004) Conversion of polycrystalline alumina to single-crystal sapphire by localized codoping with silica. J Am Ceram Soc 87:1879–1882

    Google Scholar 

  69. Dillon SJ, Harmer MP (2007) Mechanism of “solid-state” single-crystal conversion in alumina. J Am Ceram Soc 90:993–995

    Google Scholar 

  70. Kang SJL, Park JH, Ko SY, Lee HY (2015) Solid-state conversion of single crystals: the principle and the state-of-the-art. J Am Ceram Soc 98:347–360

    Google Scholar 

  71. Kang SJL (2013) Boundary structure-dependent grain growth behavior in polycrystals: model and principle. In: Barnett M (ed) Recrystallization and grain growth, pp 377–382

    Google Scholar 

  72. Kang SJL, Lee MG, An SM (2009) Microstructural evolution during sintering with control of the interface structure. J Am Ceram Soc 92:1464–1471

    Google Scholar 

  73. Smith CS (1948) Grains, phases and interfaces—an interpretation of microstructure. Trans Am Inst Min Metall Eng 175:15–51

    Google Scholar 

  74. Louat N (1983) The inhibition of grain-boundary motion by a dispersion of particles. Phil Mag A Phys Condens Matter Struct Defects Mech Prop 47:903–912

    Google Scholar 

  75. Haroun NA (1980) Theory of inclusion controlled grain-growth. J Mater Sci 15:2816–2822

    Google Scholar 

  76. Hunderi O, Nes E, Ryum N (1989) On the Zener drag—Addendum. Acta Metall 37:129–133

    Google Scholar 

  77. Nes E, Ryum N, Hunderi O (1985) On the Zener drag. Acta Metall 33:11–22

    Google Scholar 

  78. Anderson MP, Grest GS, Doherty RD, Li K, Srolovitz DJ (1989) Inhibition of grain-growth by 2nd phase particles—3 dimensional Monte-Carlo computer simulations. Scr Metall 23:753–758

    Google Scholar 

  79. Anderson MP, Grest GS, Srolovitz DJ (1989) Computation simulation of normal grain-growth in 3 dimensions. Phil Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 59:293–329

    Google Scholar 

  80. Doherty RD, Srolovitz DJ, Rollett AD, Anderson MP (1987) On the volume fraction dependence of particle limited grain-growth. Scr Metall 21:675–679

    Google Scholar 

  81. Lange FF, Yamaguchi T, Davis BI, Morgan PED (1988) Effect of ZrO2 inclusions on the sintering of Al2O3. J Am Ceram Soc 71:446–448

    Google Scholar 

  82. Lange FF, Hirlinger MM (1984) Hinderance of grain-growth in Al2O3 by ZrO2 inclusions. J Am Ceram Soc 67:164–168

    Google Scholar 

  83. Lange FF, Hirlinger MM (1987) Grain-growth in 2-phase ceramics—Al2O3 inclusions in ZrO2. J Am Ceram Soc 70:827–830

    Google Scholar 

  84. Kibbel B, Heuer AH (1986) Exaggerated grain-growth in ZrO2-toughened Al2O3. J Am Ceram Soc 69:231–236

    Google Scholar 

  85. Green DJ (1982) Critical microstructures for microcracking in Al2O3-ZrO2 composites. J Am Ceram Soc 65:610–614

    Google Scholar 

  86. Stearns LC, Harmer MP (1996) Particle-inhibited grain growth in Al2O3-SiC, 1. Experimental results. J Am Ceram Soc 79:3013–3019

    Google Scholar 

  87. Steams LC, Harmer MP (1996) Particle-inhibited grain growth in Al2O3-SiC, 2. Equilibrium and kinetic analysis. J Am Ceram Soc 79:3020–3028

    Google Scholar 

  88. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP (2014) Grain boundary complexions. Acta Mater 62:1–48

    Google Scholar 

  89. Dillon SJ, Behera SK, Harmer MP (2008) An experimentally quantifiable solute drag factor. Acta Mater 56:1374–1379

    Google Scholar 

  90. Hillert M, Sundman B (1976) Treatment of solute drag on moving grain-boundaries and phase interfaces in binary-alloys. Acta Metall 24:731–743

    Google Scholar 

  91. Hillert M, Sundman B (1977) Solute-drag treatment of transition from diffusion-controlled to diffusion less solidification. Acta Metall 25:11–18

    Google Scholar 

  92. Cahn JW (1962) Impurity-drag effect in grain boundary motion. Acta Metall 10:789–798

    Google Scholar 

  93. Drolet JP, Galibois A (1968) Impurity-drag effect on grain growth. Acta Metall 16:1387–1399

    Google Scholar 

  94. Glaeser AM, Bowen HK, Cannon RM (1986) Grain-boundary migration in LiF, 1. Mobility measurements. J Am Ceram Soc 69:119–126

    Google Scholar 

  95. Glaeser AM, Bowen HK, Cannon RM (1986) Grain-boundary migration in LiF, 2. Microstructural characteristics. J Am Ceram Soc 69:299–309

    Google Scholar 

  96. Glaeser AM, Bowen HK, Cannon RM (1986) Background impurity effects on grain-boundary migration in LiF. Mater Sci Eng 79:111–117

    Google Scholar 

  97. Kingery WD, Francois B (1965) Grain growth in porous compacts. J Am Ceram Soc 48:546–547

    Google Scholar 

  98. Handwerker CA, Dynys JM, Cannon RM, Coble RL (1990) Metal reference line technique for obtaining dihedral angles from surface grooves. J Am Ceram Soc 73:1365–1370

    Google Scholar 

  99. Handwerker CA, Dynys JM, Cannon RM, Coble RL (1990) Dihedral angles in magnesia and alumina—distributions from surface thermal grooves. J Am Ceram Soc 73:1371–1377

    Google Scholar 

  100. Brook RJ (1969) Pore-grain boundary interactions and grain growth. J Am Ceram Soc 52:56–57

    Google Scholar 

  101. Brook RJ (1969) Pores and grain growth kinetics. J Am Ceram Soc 52:339–340

    Google Scholar 

  102. Kurtz SK, Carpay FMA (1980) Microstructure and normal grain-growth in metals and ceramics, 1. Theory. J Appl Phys 51:5725–5744

    Google Scholar 

  103. Kurtz SK, Carpay FMA (1980) Microstructure and normal grain-growth in metals and ceramics, 2. Experiment. J Appl Phys 51:5745–5754

    Google Scholar 

  104. Carpay FMA (1977) Discontinuous grain-growth and pore drag. J Am Ceram Soc 60:82–83

    Google Scholar 

  105. Carpay FMA (1978) Normal grain-growth. Berichte Der Bunsen-Gesellschaft-Phys Chem Chem Phys 82:306–308

    Google Scholar 

  106. Sakarcan M, Hsueh CH, Evans AG (1983) Experimental assessment of pore breakaway during sintering. J Am Ceram Soc 66:456–461

    Google Scholar 

  107. Hsueh CH, Evans AG, Coble RL (1982) Microstructure development during final intermediate stage sintering, 1. Pore grain-boundary separation. Acta Metall 30:1269–1279

    Google Scholar 

  108. Hsueh CH, Evans AG (1983) Microstructure evolution during sintering—the role of evaporation condensation. Acta Metall 31:189–198

    Google Scholar 

  109. Yan MF, Cannon RM, Bowen HK, Chowdhry U (1983) Effect of grain-size distribution on sintered density. Mater Sci Eng 60:275–281

    Google Scholar 

  110. Yan MF (1981) Microstructural control in the processing of electronic ceramics. Mater Sci Eng 48:53–72

    Google Scholar 

  111. Bennison SJ, Harmer MP (1983) Effect of MgO solute on the kinetics of grain-growth in Al2O3. J Am Ceram Soc 66:C90–C92

    Google Scholar 

  112. Bennison SJ, Harmer MP (1990) Effect of magnesia solute on surface-diffusion in sapphire and the role of magensia in the sintering of alumina. J Am Ceram Soc 73:833–837

    Google Scholar 

  113. Brook RJ (1985) Processing technology for high-performance ceramics. Mater Sci Eng 71:305–312

    Google Scholar 

  114. Mostaghaci H, Brook RJ (1983) Production of dense and fine-grain size BaTiO3 by fast firing. Trans J Brit Ceram Soc 82:167–170

    Google Scholar 

  115. Shaw NJ, Brook RJ (1986) Structure and grain coarsening during the sintering of alumina. J Am Ceram Soc 69:107–110

    Google Scholar 

  116. Chen IW, Wang XH (2000) Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404:168–171

    Google Scholar 

  117. Wang XH, Chen PL, Chen IW (2006) Two-step sintering of ceramics with constant grain-size, I. Y2O3. J Am Ceram Soc 89:431–437

    Google Scholar 

  118. Wang J, Zhang F, Chen F, Zhang J, Zhang HL, Tian R et al (2015) Effect of Y2O3 and La2O3 on the sinterability of gamma-AlON transparent ceramics. J Eur Ceram Soc 35:23–28

    Google Scholar 

  119. Kong LB, Ma J, Zhang TS, Zhang RF (2002) Transparent lead lanthanum zirconate titanate ceramics derived from oxide mixture via a repeated annealing process. J Mater Res 17:929–932

    Google Scholar 

  120. Kong LB, Ma J, Zhu W, Tan OK (2002) Transparent PLZT8/65/35 ceramics from constituent oxides mechanically modified by high-energy ball milling. J Mater Sci Lett 21:197–199

    Google Scholar 

  121. Chen ZH, Li JT, Xu JJ, Hu ZG (2008) Fabrication of YAG transparent ceramics by two-step sintering. Ceram Int 34:1709–1712

    Google Scholar 

  122. Huang YH, Jiang DL, Zhang JX, Lin QL (2009) Fabrication of transparent lanthanum-doped yttria ceramics by combination of two-step sintering and vacuum sintering. J Am Ceram Soc 92:2883–2887

    Google Scholar 

  123. Kim DS, Lee JH, Sung RJ, Kim SW, Kim HS, Park JS (2007) Improvement of translucency in Al2O3 ceramics by two-step sintering technique. J Eur Ceram Soc 27:3629–3632

    Google Scholar 

  124. Li J, Chen Q, Feng GY, Wu WJ, Xiao DQ, Zhu JG (2012) Optical properties of the polycrystalline transparent Nd:YAG ceramics prepared by two-step sintering. Ceram Int 38:S649–S652

    Google Scholar 

  125. Li XX, Zheng BY, Odoom-Wubah T, Huang JL (2013) Co-precipitation synthesis and two-step sintering of YAG powders for transparent ceramics. Ceram Int 39:7983–7988

    Google Scholar 

  126. Seeley Z, Cherepy N, Payne S (2013) Two-step sintering of Gd0.3Lu1.6Eu0.1O3 transparent ceramic scintillator. Opt Mater Express 3

    Google Scholar 

  127. Nanko M, Dang KQ (2014) Two-step pulsed electric current sintering of transparent Al2O3 ceramics. Adv Appl Ceram 113:80–84

    Google Scholar 

  128. Isobe T, Ooyama A, Shimizu M, Nakajima A (2012) Pore size control of Al2O3 ceramics using two-step sintering. Ceram Int 38:787–793

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Grain Growth and Microstructure Development. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_8

Download citation

Publish with us

Policies and ethics