Skip to main content

Sintering and Densification (I)—Conventional Sintering Technologies

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

It is well known that, to produce ceramics, green bodies must be sintered at a certain high temperature for a given time duration to develop required microstructure and thus desired properties. In particular, transparent ceramics must be fully dense to achieve maximum optical transmittance. Sintering process is governed by a number of parameters, which can be used to build up interrelationships among processing, microstructure, properties, and performance. Sintering behavior and microstructure development have been extensively studied. Qualitative understandings include driving forces of sintering, the mechanisms of densification, controlling factors, such as particle size of precursor powders, sintering temperature, time duration and applied pressure, electrical current, and so on. This chapter serves to cover the fundamental issues of the conventional sintering technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New York

    Google Scholar 

  2. Kemethmueller S, Hagymasi M, Stiegelschmitt A, Roosen A (2007) Viscous flow as the driving force for the densification of low-temperature co-fired ceramics. J Am Ceram Soc 90:64–70

    Google Scholar 

  3. Pino-Munoz D, Bruchon J, Drapier S, Valdivieso F (2014) Sintering at particle scale: an Eulerian computing framework to deal with strong topological and material discontinuities. Arch Comput Methods Eng 21:141–187

    Google Scholar 

  4. Chaim R, Levin M, Shlayer A, Estournes C (2008) Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram 107:159–169

    Google Scholar 

  5. Fang ZZ, Wang H (2008) Densification and grain growth during sintering of nanosized particles. Int Mater Rev 53:326–352

    Google Scholar 

  6. German RM (2002) Computer modeling of sintering processes. Int J Powder Metall 38:48–66

    Google Scholar 

  7. Green DJ, Guillon O, Roedel J (2008) Constrained sintering: a delicate balance of scales. J Eur Ceram Soc 28:1451–1466

    Google Scholar 

  8. Hareesh US, Johnson R (2007) Rate controlled sintering: a unique concept for microstructural control. Trans Indian Ceram Soc 66:157–166

    Google Scholar 

  9. Lu K (2008) Sintering of nanoceramics. Int Mater Rev 53:21–38

    Google Scholar 

  10. Pan JZ (2003) Modelling sintering at different length scales. Int Mater Rev 48:69–85

    Google Scholar 

  11. Wakai F (2006) Modeling and simulation of elementary processes in ideal sintering. J Am Ceram Soc 89:1471–1484

    Google Scholar 

  12. Bordia RK, Scherer GW (1988) On constrained sintering, 1. Constitutive model for a sintering body. Acta Metall 36:2393–2397

    Google Scholar 

  13. Bordia RK, Scherer GW (1988) On contrained sintering, 2. Comparison of constitutive models. Acta Metall 36:2399–2409

    Google Scholar 

  14. Bordia RK, Scherer GW (1988) On contrained sintering, 3. Rigid inclusions. Acta Metall 36:2411–2416

    Google Scholar 

  15. Dudnik EV, Zaitseva ZA, Shevchenko AV, Lopato LM (1995) Sintering of ultradisperse powders based on zirconium dioxide (review). Powder Metall Met Ceram 34:263–271

    Google Scholar 

  16. Haviar M (1985) The mechanisms involved in solid-phase sintering. Silikaty 29:363–377

    Google Scholar 

  17. Kuang X, Carotenuto G, Nicolais L (1997) A review of ceramic sintering and suggestions on reducing sintering temperatures. Adv Perform Mater 4:257–274

    Google Scholar 

  18. Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R-Rep 23:41–100

    Google Scholar 

  19. Brown AM, Ashby MF (1980) Correlations for diffusion constants. Acta Metall 28:1085–1101

    Google Scholar 

  20. Kuczynski GC (1949) Self-diffusion in sintering of metallic particles. Trans Am Inst Min Metall Eng 185:169–178

    Google Scholar 

  21. Shaler AJ, Udin H, Kuczynski GC, Bever M (1949) Self-diffusion in sintering metallic particles—discussion. Trans Am Inst Min Metall Eng 185:896–897

    Google Scholar 

  22. Gordon RS (1973) Mass-transport in diffusional creep of ionic solids. J Am Ceram Soc 56:147–152

    Google Scholar 

  23. Hg W (1973) Gordon RS. Effect of oxygen partial-pressure on creep of polycrystalline Al2O3 doped with Cr, Fe or Ti. J Am Ceram Soc 56:140–147

    Google Scholar 

  24. Carter CB, Norton MG (2007) Ceramics materials: science and engineering. Springer, Berlin

    Google Scholar 

  25. Herring C (1950) Effect of change of scale on sintering phenomena. J Appl Phys 21:301–303

    Google Scholar 

  26. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and contact of elastic solids. Proc Ro Soc London Ser A-Math Phys Sci 324:301–313

    Google Scholar 

  27. Coble RL (1961) Sintering crystalline solids. 1. Intermediate and final state diffusion model. J Appl Phys 32:787–793

    Google Scholar 

  28. Coble RL (1961) Sintering crystalline solids. 2. Experimental test of diffusion models in powder compacts. J Appl Phys 32:793–799

    Google Scholar 

  29. Johnson DL, Cutler IB (1963) Diffusion sintering. 1. Initial stae sintering models and their application to shrinkage of powder compacts. J Am Ceram Soc 46:541–545

    Google Scholar 

  30. Johnson DL, Cutler IB (1963) Diffusion sintering. 2. Initial sintering kinetics of alumina. J Am Ceram Soc 46:545–550

    Google Scholar 

  31. Coble RL (1958) Initial sintering of alumina and hematite. J Am Ceram Soc 41:55–62

    Google Scholar 

  32. Kuczynski GC (1949) Study of the sintering of glass. J Appl Phys 20:1160–1163

    Google Scholar 

  33. Ashby MF (1974) First report on sintering diagrams. Acta Metall 22:275–289

    Google Scholar 

  34. Swinkels FB, Ashby MF (1981) Overview 11—A 2nd report on sintering diagrams. Acta Metall 29:259–281

    Google Scholar 

  35. Coble RL (1973) Effects of particle-size distribution in initial-stage sintering. J Am Ceram Soc 56:461–466

    Google Scholar 

  36. Johnson DL (1969) New method of obtaining volume grain-boundary and surface diffusion coefficients from sintering data. J Appl Phys 40:192–200

    Google Scholar 

  37. Swinkels FB, Ashby MF (1980) Role of surface redistribution in sintering by grain-boundary transport. Powder Metall 23:1–7

    Google Scholar 

  38. Coleman SC, Beere WB (1975) Sintering of open and closed porosity in UO2. Phil Mag 31:1403–1413

    Google Scholar 

  39. Nichols FA, Mullins WW (1965) Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J Appl Phys 36:1826–1835

    Google Scholar 

  40. Bross P, Exner HE (1979) Computer-simulation of sintering processes. Acta Metall 27:1013–1020

    Google Scholar 

  41. Exner HE, Bross P (1979) Material transport rate and stress-distribution during grain-boundary diffusion driven by surface-tension. Acta Metall 27:1007–1012

    Google Scholar 

  42. Ross JW, Miller WA, Weatherly GC (1981) Dynamic computer-simulation of viscous-flow sintering kinetics. J Appl Phys 52:3884–3888

    Google Scholar 

  43. Ross JW, Miller WA, Weatherly GC (1982) Computer-simulation of sintering in powder compacts. Acta Metall 30:203–212

    Google Scholar 

  44. Svoboda J, Riedel H (1995) Quasi-equilimbrium sintering for coupled grain-boundary and surface-diffusion. Acta Metall Mater 43:499–506

    Google Scholar 

  45. Svoboda J, Riedel H (1995) New solution describing the formation of interparticle necks in solid-state sintering. Acta Metall Mater 43:1–10

    Google Scholar 

  46. Jagota A, Dawson PR (1988) Micromechanical modeling of powder compacts 1. Unit problmes for sintering and traction induced deformation. Acta Metall 36:2551–2561

    Google Scholar 

  47. Jagota A, Dawson PR (1988) Micromechanical modeling of powder compacts 2. Truss formulation of discrete packings. Acta Metall 36:2563–2573

    Google Scholar 

  48. Jagota A, Dawson PR (1990) Simulation of the viscous sintering of two particles. J Am Ceram Soc 73:173–177

    Google Scholar 

  49. Djohari H, Martinez-Herrera JI, Derby JJ (2009) Transport mechanisms and densification during sintering: I. Viscous flow versus vacancy diffusion. Chem Eng Sci 64:3799–3809

    Google Scholar 

  50. Martinezherrera JI, Derby JJ (1995) Viscous sintering of shperical-particles via finite-element analysis. J Am Ceram Soc 78:645–649

    Google Scholar 

  51. Jagota A (1994) Simulation of the viscous sintering of coated particles. J Am Ceram Soc 77:2237–2239

    Google Scholar 

  52. Pejovnik S, Smolej V, Susnik D, Kolar D (1979) Statistical-analysis of the validity of sintering equations. Powder Metall Int 11:22–23

    Google Scholar 

  53. Coble RL (1970) Diffusion models for hot pressing with surface energy and pressure effects as driving forces. J Appl Phys 41:4798–4807

    Google Scholar 

  54. Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445

    Google Scholar 

  55. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682

    Google Scholar 

  56. Paladino AE, Coble RL (1963) Effect of grain boundaries on diffusion-controlled processes in aluminum oxide. J Am Ceram Soc 46:133–136

    Google Scholar 

  57. Harmer MP, Brook RJ (1980) The effect of MgO additions on the kinetics of hot-pressing in Al2O3. J Mater Sci 15:3017–3024

    Google Scholar 

  58. Beere W (1975) Diffusional flow and hot-pressing—study on MgO. J Mater Sci 10:1434–1440

    Google Scholar 

  59. Vieira JM, Brook RJ (1984) Kinetics of hot-pressing—the semilogarithmic law. J Am Ceram Soc 67:245–249

    Google Scholar 

  60. Vieira JM, Brook RJ (1984) Hot-pressing high-purity magnesium-oxide. J Am Ceram Soc 67:450–454

    Google Scholar 

  61. Beere W (1975) Unifying theory of stability of penetrating liquid-phase and sintering pores. Acta Metall 23:131–138

    Google Scholar 

  62. Beere W (1975) Second stage sintering kinetics of powder compacts. Acta Metall 23:139–145

    Google Scholar 

  63. Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams—new development. Acta Metall 33:2163–2174

    Google Scholar 

  64. Oyane M, Shima S, Tabata T (1978) Consideration of basid equations and their application in forming of metal powders and porous metals. J Mech Working Technol 1:325–341

    Google Scholar 

  65. Shima S, Oyane M (1976) Pasticity theory for porous metals. Int J Mech Sci 18:285–291

    Google Scholar 

  66. Dutton RE, Shamasundar S, Semiatin SL (1995) Modeling the hot consolication of ceramic and metal powders. Metall Mater Trans A-Phys Metall Mater Sci 26:2041–2051

    Google Scholar 

  67. Kingery WD, Niki E, Narasimhan MD (1961) Sintering of oxide and carbide-meal compositions in presence of a liquid phase. J Am Ceram Soc 44:29–35

    Google Scholar 

  68. Huppmann WJ, Riegger H (1977) Liquid-phase sintering of model system W-Ni. Int J Powder Metall 13:243–247

    Google Scholar 

  69. Kaysser WA, Takajo S, Petzow G (1984) Particle growth by coalescence during liquid-phase sintering of Fe-Cu. Acta Metall 32:115–122

    Google Scholar 

  70. Chu MY, Rahaman MN, Dejonghe LC, Brook RJ (1991) Effect of heating rate on sintering and coarsening. J Am Ceram Soc 74:1217–1225

    Google Scholar 

  71. Raj R, Ashby MF (1975) Intergranular fracture at elevated-temperature. Acta Metall 23:653–666

    Google Scholar 

  72. German RM (1990) Supersolidus liquid-phase sintering, 1. Process review. Int J Powder Metall 26:23–34

    Google Scholar 

  73. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39

    Google Scholar 

  74. Liu JX, German RM (2001) Microstructure effect on dihedral angle in liquid-phase sintering. Metall Mater Trans A-Phys Metall Mater Sci 32:165–169

    Google Scholar 

  75. Smith CS (1948) Grains, phases, and interfaces—an interpretation of microstructure. Trans Am Inst Min Metall Eng 175:15–51

    Google Scholar 

  76. Park HH, Kwon OJ, Yoon DN (1986) The critical grain-size for liquid flow into pores during liquid-phase sintering. Metall Trans A-Phys Metall Mater Sci 17:1915–1919

    Google Scholar 

  77. Park HH, Yoon DN (1985) Effect of dihedral angle on the morphology of grains in a matrix phase. Metall Trans A-Phys Metall Mater Sci 16:923–928

    Google Scholar 

  78. Hwang KS, German RM, Lenel FV (1987) Capilllary forces between spheres during agglomeration and liquid-phase sintering. Metall Trans A-Phys Metall Mater Sci 18:11–17

    Google Scholar 

  79. Zovas PE, German RM, Hwang KS, Li CJ (1983) Activated and liquid-phase sintering—process and problems. J Metals 35:28–33

    Google Scholar 

  80. Lange FF (1982) Liquid-phase sintering—are liquids squeezed out from between compressed particles. J Am Ceram Soc 65:C23–C24

    Google Scholar 

  81. Eley DD (1961) Adhesion. Oxford University Press, Oxford

    Google Scholar 

  82. Clarke DR (1987) On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 70:15–22

    Google Scholar 

  83. Kwon OJ, Yoon DN (1981) Closure of isolated pores in liquid-phase sintering of W-Ni. Int J Powder Metall 17:127–134

    Google Scholar 

  84. Shaw TM (1986) Liquid redistribution during liquid-phase sintering. J Am Ceram Soc 69:27–34

    Google Scholar 

  85. Huppmann WJ, Riegger H (1975) Modeling of rearrangement processes in liquid-phase sintering. Acta Metall 23:965–971

    Google Scholar 

  86. Huppmann WJ, Riegger H, Kaysser WA, Smolej V, Pejovnik S (1979) Elementary mechanisms of liquid-phase sintering. 1. Rearrangement. Zeitschrift Fur Metallkunde 70:707–713

    Google Scholar 

  87. Huppmann WJ (1979) Elementary mechanisms of liquid-phase sintering 2. Solution-reprecipitation. Zeitschrift Fur Metallkunde 70:792–797

    Google Scholar 

  88. Lee SM, Chaix JM, Martin CL, Allibert CH, Kang SJL (1999) Computer simulation of particle rearrangement in the presence of liquid. Metals Mater Korea 5:197–203

    Google Scholar 

  89. Kingery WD (1959) Densification during sintering in the presence of a liquid phase 1. Theory. J Appl Phys 30:301–306

    Google Scholar 

  90. Kingery WD, Narasimhan MD (1959) Densification during sintering in the presence of a liquid phase 2. Experimental. J Appl Phys 30:307–310

    Google Scholar 

  91. Takajo S, Kaysser WA, Petzow G (1984) Analysis of particle growth by coalescence during liquid-phase sintering. Acta Metall 32:107–113

    Google Scholar 

  92. Marion JE, Hsueh CH, Evans AG (1987) Liquid-phase sintering of ceramics. J Am Ceram Soc 70:708–713

    Google Scholar 

  93. Eremenko VN, Naidich YV, Lavrinenko IA (1985) Liquid phase sintering. Consultants Bureau, New York

    Google Scholar 

  94. Yoon DN, Huppmann WJ (1979) Grain-growth and densification during liquid-phase sintering of W-Ni. Acta Metall 27:693–698

    Google Scholar 

  95. Yoon DN, Huppmann WJ (1979) Chemically driven growth of tungsten grains during sintering in liquid nickel. Acta Metall 27:973–977

    Google Scholar 

  96. Kaysser WA, Zivkovic M, Petzow G (1985) Shape accomodation during grain-growth in the presence of a liquid-phase. J Mater Sci 20:578–584

    Google Scholar 

  97. Gessinge GH, Fischmei HF (1972) Modified model for sintering of tungsten with nickel additions. J Less-Common Metals 27:129–141

    Google Scholar 

  98. Gessinge GH, Fischmei HF, Lukas HL (1973) Model for second-stage liquid-phase sintering with a partially wetting liquid. Acta Metall 21:715–724

    Google Scholar 

  99. Gessinge GH, Fischmei HF, Lukas HL (1973) Influence of a partially wetting second-phase on sintering of solid particles. Powder Metall 16:119–127

    Google Scholar 

  100. Kang SJL, Kim KH, Yoon DN (1991) Densification and shrinkage during liquid-phase sintering. J Am Ceram Soc 74:425–427

    Google Scholar 

  101. Park HH, Cho SJ, Yoon DN (1984) Pore filling process in liquid-phase sintering. Metall Trans A-Phys Metall Mater Sci 15:1075–1080

    Google Scholar 

  102. Kang TK, Yoon DN (1978) Coarsening of tungsten grain in liquid nickel-tungsten matrix. Metall Trans A-Phys Metall Mater Sci 9:433–438

    Google Scholar 

  103. German RM (1995) Microstructure of the gravitationally settled region in a liquid-phase sintered dilute tungsten heavy alloy. Metall Mater Trans A-Phys Metall Mater Sci 26:279–288

    Google Scholar 

  104. Liu YX, Heaney DF, German RM (1995) Gravity-induced solid grain packing during liquid-phase sintering. Acta Metall Mater 43:1587–1592

    Google Scholar 

  105. Bowen LJ, Weston RJ, Carruthers TG, Brook RJ (1978) Hot-pressing and alpha-beta phase-transformation in silicon nitride. J Mater Sci 13:341–350

    Google Scholar 

  106. Hu SC, Dejonghe LC (1981) Pre-eutectic densification in MgF2-CaF2. Am Ceram Soc Bull 60:385

    Google Scholar 

  107. Hu SC, De Jonghe LC (1983) Pre-eutectic densification in MgF2-CaF2. Ceram Int 9:123–126

    Google Scholar 

  108. Wu SJ, Dejonghe LC, Rahaman MN (1985) Subeutectic densification and second-phase formation in Al2O3-CaO. J Am Ceram Soc 68:385–388

    Google Scholar 

  109. Luo J, Wang HF, Chiang YM (1999) Origin of solid-state activated sintering in Bi2O3-doped ZnO. J Am Ceram Soc 82:916–920

    Google Scholar 

  110. German RM, Munir ZA (1976) Enhanced low-temperature sintering of tungsten. Metall Trans A-Phys Metall Mater Sci 7:1873–1877

    Google Scholar 

  111. Zovas PE, German RM, Hwang KS, Li CJ (1983) Activated and liquid-phase sintering—progress and problems. J Metals 35:28–33

    Google Scholar 

  112. Shakhparonov MI, Durov VA (1979) Theory of collective reaction in liquid-phase 5. Collective reaction and vitrification. Zh Fiz Khim 53:2451–2455

    Google Scholar 

  113. Ruiz-Valdes JJ, Gorokhovsky AV, Escalante-Garcia JI (2005) Vitrification in the BaO-B2O3-Al2O3-TiO2 system containing small admixtures of PbO. J Non-Cryst Solids 351:2036–2041

    Google Scholar 

  114. Yang HT, Yang GT, Yuan RZ (1998) Vitrification and devitrification of MgO during sintering of Si3N4-MgO-CeO2 ceramics. Mater Chem Phys 57:178–181

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Sintering and Densification (I)—Conventional Sintering Technologies. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_5

Download citation

Publish with us

Policies and ethics