Skip to main content

Transparent Ceramic Materials

  • Chapter
  • First Online:
Transparent Ceramics

Abstract

Various transparent ceramics have been fabricated by different processing techniques. Previously, it was accepted that, to be transparent ceramics, materials should have an isotropic lattice structure, i.e., cubic structure. However, as demonstrated in this chapter, some non cubic-structured materials can also be processed into transparent ceramics, such as tetragonal ferroelectric ceramics and hexagonal alumina ceramics. In addition, transparent ceramics have been derived from glasses through thermal annealing. This chapter is aimed to summarize transparent ceramics that have been reported in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaim R, Shen ZJ, Nygren M (2004) Transparent nanocrystalline MgO by rapid and low-temperature spark plasma sintering. J Mater Res 19:2527–2531

    Google Scholar 

  2. Chaim R, Shen ZJ, Nygren M (2005) Transparent nanocrystalline MgO by low temperature spark plasma sintering. In: Lu S, Hu MZ, Gogotsi Y (eds) Ceramic nanomaterials and nanotechnology III. American Ceramic Society, Westerville, pp 21–30

    Google Scholar 

  3. Chen DY, Jordan EH, Gell M (2008) Pressureless sintering of translucent MgO ceramics. Scripta Mater 59:757–759

    Google Scholar 

  4. Fang Y, Agrawal D, Skandan G, Jain M (2004) Fabrication of translucent MgO ceramics using nanopowders. Mater Lett 58:551–554

    Google Scholar 

  5. Ikegami T, Matsuda SI, Suzuki H (1974) Effect of halide dopants on fabrication of transparent polycrystalline MgO. J Am Ceram Soc 57:507

    Google Scholar 

  6. Sanamyan T, Cooper C, Gilde G, Sutorik AC, Dubinskii M (2014) Fabrication and spectroscopic properties of transparent Nd3+:MgO and Er3+:MgO ceramics. Laser Phys Lett 11:065801

    Google Scholar 

  7. Miles GD, Sambell RAJ, Rutherfo J, Stephens Gw (1967) Fabrication of fully dense transparent polycrystalline magnesia. Trans Br Ceram Soc 66:319

    Google Scholar 

  8. Misawa T, Moriyoshi Y, Yajima Y, Takenouchi S, Ikegami T (1999) Effect of silica and boron oxide on transparency of magnesia ceramics. J Ceram Soc Jpn 107:343–348

    Google Scholar 

  9. Suzuki M, Ikegami T, Yokoyama M, Komatsu T, Fukahori A (2005) Effects of chloride ion on densification transparency magnesia ceramics. J Ceram Soc Jpn 113:149–153

    Google Scholar 

  10. An LQ, Ito A, Zhang J, Tang DY, Goto T (2014) Highly transparent Nd3+:Lu2O3 produced by spark plasma sintering and its laser oscillation. Opt Mater Express 4:1420–1426

    Google Scholar 

  11. Antipov OL, Golovkin SY, Gorshkov ON, Zakharov NG, Zinovev AP, Kasatkin AP et al (2011) Structural, optical, and spectroscopic properties and efficient two-micron lasing of new Tm3+:Lu2O3 ceramics. Quant Electron 41:863–868

    Google Scholar 

  12. Chen QW, Shi Y, An LQ, Chen JY, Shi JL (2006) Fabrication and photoluminescence characteristics of Eu3+-Doped Lu2O3 transparent ceramics. J Am Ceram Soc 89:2038–2042

    Google Scholar 

  13. Kim W, Baker C, Bowman S, Florea C, Villalobos G, Shaw B, et al (2013) Laser oscillation from Ho3+ doped Lu2O3 ceramics. Opt Mater Express 3:176WL

    Google Scholar 

  14. Lu J, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K et al (2002) Promising ceramic laser material: highly transparent Nd3+:Lu2O3 ceramic. Appl Phys Lett 81:4324–4326

    Google Scholar 

  15. Seeley ZM, Kuntz JD, Cherepy NJ, Payne SA (2011) Transparent Lu2O3: Eu ceramics by sinter and HIP optimization. Opt Mater 33:1721–1726

    Google Scholar 

  16. Shi Y, Chen QW, Shi JL (2009) Processing and scintillation properties of Eu3+ doped Lu2O3 transparent ceramics. Opt Mater 31:729–733

    Google Scholar 

  17. Gheorghe C, Lupei A, Lupei V, Ikesue A, Enculescu M (2011) Intensity parameters of Tm3+ doped Sc2O3 transparent ceramic laser material. Opt Mater 33:501–505

    Google Scholar 

  18. Gheorghe C, Lupei A, Voicu F, Enculescu M (2012) Sm3+-doped Sc2O3 polycrystalline ceramics: spectroscopic investigation. J Alloy Compd 535:78–82

    Google Scholar 

  19. Lupei V, Lupei A, Ikesue A (2005) Transparent Nd and (Nd, Yb)-doped Sc2O3 ceramics as potential new laser materials. Appl Phys Lett 86

    Google Scholar 

  20. Alderighi D, Pirri A, Toci G, Vannini M, Esposito L, Costa AL et al (2010) Characterization of Yb:YAG ceramics as laser media. Opt Mater 33:205–210

    Google Scholar 

  21. Ba XW, Li J, Pan YB, Zeng YP, Kou HM, Liu WB et al (2013) Comparison of aqueous- and non-aqueous-based tape casting for preparing YAG transparent ceramics. J Alloy Compd 577:228–231

    Google Scholar 

  22. Bagayev SN, Osipov VV, Solomonov VI, Shitov VA, Maksimov RN, Lukyashin KE et al (2012) Fabrication of Nd3+:YAG laser ceramics with various approaches. Opt Mater 34:1482–1487

    Google Scholar 

  23. Chaim R, Kalina M, Shen JZ (2007) Transparent yttrium aluminum garnet (YAG) ceramics by spark plasma sintering. J Eur Ceram Soc 27:3331–3337

    Google Scholar 

  24. Chen ZH, Li JT, Hu ZG, Xu JJ (2008) Fabrication of YAG transparent ceramics by two step sintering process. J Inorg Mater 23:130–134

    Google Scholar 

  25. Frage N, Kalabukhov S, Sverdlov N, Ezersky V, Dariel MP (2010) Densification of transparent yttrium aluminum garnet (YAG) by SPS processing. J Eur Ceram Soc 30:3331–3337

    Google Scholar 

  26. Guo W, Lu TC, Tong SH (2007) Effect of phase of YAG powder synthesized by co-precipitation on transparent ceramic sintering. In: Pan W, Gong JH (eds) High-performance ceramics IV, Pts 1-3. Trans Tech Publications Ltd, Stafa-Zurich, pp 2054–2057

    Google Scholar 

  27. Agrawal D, Cheng JP, Roy R (2002) Microwave reactive sintering to fully transparent aluminum oxynitride (AlON) ceramics. In: McCauley JW, Crowson A, Gooch WA, Rajendran AM, Bless SJ, Logan KV et al (eds) Ceramic armor materials by design. American Ceramic Society, Westerville, pp 587–593

    Google Scholar 

  28. Hartnett TM, Bernstein SD, Maguire EA, Tustison RW (1998) Optical properties of AlON (aluminum oxynitride). Infrared Phys Technol 39:203–211

    Google Scholar 

  29. Jiang HW, Du HB, Tian TY, Wu H (2010) Influence of Y2O3 additive on transparent of AlON ceramics. In: Pan W, Gong JH (eds) Chinese ceramics communications, pp 580–581

    Google Scholar 

  30. Wang J, Zhang F, Chen F, Zhang J, Zhang HL, Tian R et al (2015) Effect of Y2O3 and La2O3 on the sinterability of gamma-AlON transparent ceramics. J Eur Ceram Soc 35:23–28

    Google Scholar 

  31. Choi JJ, Ryu J, Kim HE (2001) Microstructural evolution of transparent PLZT ceramics sintered in air and oxygen atmospheres. J Am Ceram Soc 84:1465–1469

    Google Scholar 

  32. Hertling GH (1971) Improved hot-pressed electrooptic ceramics in (Pb, La)(Zr, Ti)O3 system. J Am Ceram Soc 54:303–309

    Google Scholar 

  33. Haertling GH (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82:797–818

    Google Scholar 

  34. Fang Y, Roy R, Agrawal DK, Roy DM (1996) Transparent mullite ceramics from diphasic aerogels by microwave and conventional processings. Mater Lett 28:11–15

    Google Scholar 

  35. Zhang GM, Wang YC, Fu ZY, Wang H, Wang WM, Zhang JY et al (2009) Transparent mullite ceramic from single-phase gel by spark plasma sintering. J Eur Ceram Soc 29:2705–2711

    Google Scholar 

  36. Dang KQ, Takei S, Kawahara M, Nanko M (2011) Pulsed electric current sintering of transparent Cr-doped Al2O3. Ceram Int 37:957–963

    Google Scholar 

  37. Jiang D, Hulbert DM, Anselmi-Tamburini U, Ng T, Land D, Mukherjee AK (2008) Optically transparent polycrystalline Al2O3 produced by spark plasma sintering. J Am Ceram Soc 91:151–154

    Google Scholar 

  38. Krell A, Klimke J, Hutzler T (2009) Advanced spinel and sub-μm Al2O3 for transparent armour applications. J Eur Ceram Soc 29:275–281

    Google Scholar 

  39. Lu SZ, Yang QH (2009) Fluorescencec characteristics of Al2O3 transparent ceramics. Chin J Inorg Chem 25:1642–1645

    Google Scholar 

  40. Nanko M, Dang KQ (2014) Two-step pulsed electric current sintering of transparent Al2O3 ceramics. Adv Appl Ceram 113:80–84

    Google Scholar 

  41. Penilla EH, Kodera Y, Garay JE (2013) Blue-green emission in terbium-doped alumina (Tb:Al2O3) transparent ceramics. Adv Funct Mater 23:6036–6043

    Google Scholar 

  42. Roussel N, Lallemant L, Chane-Ching JY, Guillemet-Fristch S, Durand B, Garnier V et al (2013) Highly tense transparent-Al2O3 ceramics from ultrafine nanoparticles via a standard SPS sintering. J Am Ceram Soc 96:1039–1042

    Google Scholar 

  43. Yang QH, Zeng ZJ, Xu J, Ding J, Su LB (2006) Spectroscopic characteristics of Cr4+ in transparent polycrystalline Al2O3. Acta Phys Sin 55:4166–4169

    Google Scholar 

  44. Zhang XJ, Qiao GJ, Zhang X (2011) Effect of Mg doping on the microstructure and properties of α-Al2O3 transparent ceramics. In: Tan HH (ed) Mechanical, materials and manufacturing engineering, Pts 1–3. Trans Tech Publications Ltd, Stafa-Zurich, pp 1264–1269

    Google Scholar 

  45. Kim BN, Hiraga K, Morita K, Yoshida H (2007) Spark plasma sintering of transparent alumina. Scripta Mater 57:607–610

    Google Scholar 

  46. Kim BN, Hiraga K, Morita K, Yoshida H, Miyazaki T, Kagawa Y (2009) Microstructure and optical properties of transparent alumina. Acta Mater 57:1319–1326

    Google Scholar 

  47. Krell A, Blank P, Ma HW, Hutzler T, van Bruggen MPB, Apetz R (2003) Transparent sintered corundum with high hardness and strength. J Am Ceram Soc 86:12–18

    Google Scholar 

  48. Kim BN, Hiraga K, Morita K, Yoshida H (2009) Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina. J Eur Ceram Soc 29:323–327

    Google Scholar 

  49. Mizuta H, Oda K, Shibasaki Y, Maeda M, Machida M, Ohshima K (1992) Preparation of high strength and translucent alumina by hot isostatic pressing. J Am Ceram Soc 75:469–473

    Google Scholar 

  50. Apetz R, van Bruggen MPB (2003) Transparent alumina: a light-scattering model. J Am Ceram Soc 86:480–486

    Google Scholar 

  51. Krell A, Klimke J (2006) Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina. J Am Ceram Soc 89:1985–1992

    Google Scholar 

  52. Pauling L, Hendricks SB (1925) The crystal structures of hematite and corundum. J Am Chem Soc 47:781–790

    Google Scholar 

  53. Jin XH, Gao L, Sun J (2010) Highly transparent alumina spark plasma sintered from common-grade commercial powder: the effect of powder treatment. J Am Ceram Soc 93:1232–1236

    Google Scholar 

  54. Wei GC, Rhodes WH (2000) Sintering of translucent alumina in a nitrogen-hydrogen gas atmosphere. J Am Ceram Soc 83:1641–1648

    Google Scholar 

  55. Mao XJ, Wang SW, Shimai S, Guo JK (2008) Transparent polycrystalline alumina ceramics with orientated optical axes. J Am Ceram Soc 91:3431–3433

    Google Scholar 

  56. Li JG, Ye YP (2006) Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. J Am Ceram Soc 89:139–143

    Google Scholar 

  57. Godlinski D, Kuntz M, Grathwohl G (2002) Transparent alumina with submicrometer grains by float packing and sintering. J Am Ceram Soc 85:2449–2456

    Google Scholar 

  58. Liu W, Bo TZ, Xie ZP, Wu Y, Yang XF (2011) Fabrication of injection moulded translucent alumina ceramics via pressureless sintering. Adv Appl Ceram 110:251–254

    Google Scholar 

  59. Roh JY, Kwon J, Lee CS, Choi JS (2011) Novel fabrication of pressure-less sintering of translucent powder injection molded (PIM) alumina blocks. Ceram Int 37:321–326

    Google Scholar 

  60. Liu W, Xie ZP, Bo TZ, Yang XF (2011) Injection molding of surface modified powders with high solid loadings: a case for fabrication of translucent alumina ceramics. J Eur Ceram Soc 31:1611–1617

    Google Scholar 

  61. Kim DS, Lee JH, Sung RJ, Kim SW, Kim HS, Park JS (2007) Improvement of translucency in Al2O3 ceramics by two-step sintering technique. J Eur Ceram Soc 27:3629–3632

    Google Scholar 

  62. Liu W, Xie ZP, Liu GW, Yang XF (2011) Novel preparation of translucent alumina ceramics induced by doping additives via chemical precipitation method. J Am Ceram Soc 94:3211–3215

    Google Scholar 

  63. Liu GW, Xie ZP, Liu W, Chen LX, Wu Y (2012) Fabrication of translucent alumina ceramics from pre-sintered bodies infiltrated with sintering additive precursor solutions. J Eur Ceram Soc 32:711–715

    Google Scholar 

  64. Hotta Y, Tsugoshi T, Nagaoka T, Yasuoka M, Nakamura K, Watari K (2003) Effect of oligosaccharide alcohol addition to alumina slurry and translucent alumina produced by slip casting. J Am Ceram Soc 86:755–760

    Google Scholar 

  65. Petit J, Dethare P, Sergent A, Marino R, Ritti MH, Landais S et al (2011) Sintering of alpha-alumina for highly transparent ceramic applications. J Eur Ceram Soc 31:1957–1963

    Google Scholar 

  66. Suarez M, Fernandez A, Menendez JL, Torrecillas R (2009) Grain growth control and transparency in spark plasma sintered self-doped alumina materials. Scripta Mater 61:931–934

    Google Scholar 

  67. Alvarez-Clemares I, Mata-Osoro G, Fernandez A, Lopez-Esteban S, Pecharroman C, Palomares J et al (2010) Transparent alumina/ceria nanocomposites by spark plasma sintering. Adv Eng Mater 12:1154–1160

    Google Scholar 

  68. Roussel N, Lallemant L, Durand B, Guillemet S, Ching JYC, Fantozzi G et al (2011) Effects of the nature of the doping salt and of the thermal pre-treatment and sintering temperature on spark plasma sintering of transparent alumina. Ceram Int 37:3565–3573

    Google Scholar 

  69. Grasso S, Hu CF, Maizza G, Kim BN, Sakka Y (2011) Effects of pressure application method on transparency of spark plasma sintered alumina. J Am Ceram Soc 94:1405–1409

    Google Scholar 

  70. Stuer M, Zhao Z, Aschauer U, Bowen P (2010) Transparent polycrystalline alumina using spark plasma sintering: effect of Mg, Y and La doping. J Eur Ceram Soc 30:1335–1343

    Google Scholar 

  71. Brosnan KH, Messing GL, Agrawal DK (2003) Microwave sintering of alumina at 2.45 GHz. J Am Ceram Soc 86:1307–1312

    Google Scholar 

  72. Watzig K, Hutzler T, Krell A (2009) Transparent spinel by reactive sintering of different alumina modifications with MgO. CFI-Ceram Forum Int 86:E47–E49

    Google Scholar 

  73. Krell A, Baur G, Dahne C (2003) Transparent sintered sub-μm AI2O3 with IR transmissivity equal to sapphire. In: Tustison RW (ed) Window and dome technologies VIII. SPIE-Int Soc Optical Engineering, Bellingham, pp 199–207

    Google Scholar 

  74. Krell A (1998) The effects of load, grain size, and grain boundaries on the hardness of alumina. In: Bray D (ed) 22nd annual conference on composites, advanced ceramics, materials, and structures: B, pp 159–68

    Google Scholar 

  75. Saha D, Mistry KK, Giri R, Guha A, Sensgupta K (2005) Dependence of moisture absorption property on sol–gel process of transparent nano-structured γ-Al2O3 ceramics. Sens Actuators B-Chem 109:363–366

    Google Scholar 

  76. Lei LW, Fu ZY, Wang H, Lee SW, Niihara K (2012) Transparent yttria stabilized zirconia from glycine-nitrate process by spark plasma sintering. Ceram Int 38:23–28

    Google Scholar 

  77. Zhang HB, Kim BN, Morita K, Yoshida H, Lim JH, Hiraga K (2010) Optimization of high-pressure sintering of transparent zirconia with nano-sized grains. J Alloy Compd 508:196–199

    Google Scholar 

  78. Anselmi-Tamburini U, Woolman JN, Munir ZA (2007) Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering. Adv Funct Mater 17:3267–3273

    Google Scholar 

  79. Peuchert U, Okano Y, Menke Y, Reichel S, Ikesue A (2009) Transparent cubic-ZrO2 ceramics for application as optical lenses. J Eur Ceram Soc 29:283–291

    Google Scholar 

  80. Vahldiek FW (1967) Translucent ZrO2 prepared at high pressures. J Less-Common Metals 13:530–540

    Google Scholar 

  81. Mazdiyas KS, Lynch CT, Smith JS (1967) Cubic phase stabilization of translucent yttria-zirconia at very low temperatures. J Am Ceram Soc 50:532–537

    Google Scholar 

  82. Duran P, Recio P, Jurado JR, Pascual C, Moure C (1989) Preparation, sintering and properties of translucent Er2O3-doped tetragonal zirconia. J Am Ceram Soc 72:2088–2093

    Google Scholar 

  83. Srdic VV, Winterer M, Hahn H (2000) Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis. J Am Ceram Soc 83:729–736

    Google Scholar 

  84. Srdic VV, Winterer M, Hahn H (2000) Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J Am Ceram Soc 83:1853–1860

    Google Scholar 

  85. Tsukuma K (1986) Transparent titania yttria zirconia ceramics. J Mater Sci Lett 5:1143–1144

    Google Scholar 

  86. Casolco SR, Xu J, Garay JE (2008) Transparent/Translucent polycrystalline nanostructured yttria stabilized zirconia with varying colors. Scripta Mater 58:516–519

    Google Scholar 

  87. Alaniz JE, Perez-Gutierrez FG, Aguilar G, Garay JE (2009) Optical properties of transparent nanocrystalline yttria stabilized zirconia. Opt Mater 32:62–68

    Google Scholar 

  88. Tsukuma K, Yamashita I, Kusunose T (2008) Transparent 8 mol% Y2O3–ZrO2 (8Y) ceramics. J Am Ceram Soc 91:813–818

    Google Scholar 

  89. Zhang H, Kim B-N, Morita K, Hiraga HYK, Sakka Y (2011) Effect of sintering temperature on optical properties and microstructure of translucent zirconia prepared by high-pressure spark plasma sintering. Sci Technol Adv Mater 12:055003

    Google Scholar 

  90. Klimke J, Krell A (2005) Polycrystalline ZrO2-transparent ceramics with high refractive index. Fraunhofer Institute for Ceramic Technologies and Sintered Materials (IKTS), p 23

    Google Scholar 

  91. Trunec M, Chlup Z (2009) Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure. Scripta Mater 61:56–59

    Google Scholar 

  92. Klimke J, Trunec M, Krell A (2011) Transparent tetragonal yttria-stabilized zirconia ceramics: influence of scattering caused by birefringence. J Am Ceram Soc 94:1850–1858

    Google Scholar 

  93. Chaim R, Hefetz M (1998) Fabrication of dense nanocrystalline ZrO2-3 wt.% Y2O3 by hot-isostatic pressing. J Mater Res 13:1875–1880

    Google Scholar 

  94. Nigara Y (1968) Measurement of optical constants of yttrium oxide. Jpn J Appl Phys 7:404–408

    Google Scholar 

  95. Fukabori A, Yanagida T, Pejchal J, Maeo S, Yokota Y, Yoshikawa A et al (2010) Optical and scintillation characteristics of Y2O3 transparent ceramic. J Appl Phys 107:073501

    Google Scholar 

  96. Hou XR, Zhou SM, Jia TT, Lin H, Teng H (2011) Investigation of up-conversion luminescence properties of RE/Yb co-doped Y2O3 transparent ceramic (RE = Er, Ho, Pr, and Tm). Phys B-Condens Matter 406:3931–3937

    Google Scholar 

  97. Micheli AL, Dungan DF, Mantese JV (1992) High-density yttria for practical ceramic applications. J Am Ceram Soc 75:709–711

    Google Scholar 

  98. Iwasawa J, Nishimizu R, Tokita M, Kiyohara M, Uematsu K (2007) Plasma-resistant dense yttrium oxide film prepared by aerosol deposition process. J Am Ceram Soc 90:2327–2332

    Google Scholar 

  99. Lefever RA, Matsko J (1967) Transparent yttrium oxide ceramics. Mater Res Bull 2:865–869

    Google Scholar 

  100. Huang YH, Jiang DL, Zhang JX, Lin QL (2009) Fabrication of transparent lanthanum-doped yttria ceramics by combination of two-step sintering and vacuum sintering. J Am Ceram Soc 92:2883–2887

    Google Scholar 

  101. Ikegami T, Li JG, Mori T, Moriyoshi Y (2002) Fabrication of transparent yttria ceramics by the low-temperature synthesis of yttrium hydroxide. J Am Ceram Soc 85:1725–1729

    Google Scholar 

  102. Ikegami T, Mori T, Yajima Y, Takenouchi S, Misawa T, Moriyoshi Y (1999) Fabrication of transparent yttria ceramics through the synthesis of yttrium hydroxide at low temperature and doping by sulfate ions. J Ceram Soc Jpn 107:297–299

    Google Scholar 

  103. Jin LL, Zhou GH, Shimai S, Zhang J, Wang SW (2010) ZrO2-doped Y2O3 transparent ceramics via slip casting and vacuum sintering. J Eur Ceram Soc 30:2139–2143

    Google Scholar 

  104. Zhang J, An LQ, Liu M, Shimai S, Wang SW (2009) Sintering of Yb3+:Y2O3 transparent ceramics in hydrogen atmosphere. J Eur Ceram Soc 29:305–309

    Google Scholar 

  105. Greskovich C, Chernoch JP (1973) Polycrystalline ceramic lasers. J Appl Phys 44:4599–4606

    Google Scholar 

  106. Rhodes WH (1981) Controlled transient solid 2nd-phase sintering of yttria. J Am Ceram Soc 64:13–19

    Google Scholar 

  107. Saito N, Matsuda S, Ikegami T (1998) Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder. J Am Ceram Soc 81:2023–2028

    Google Scholar 

  108. Podowitz SR, Gaume R, Feigelson RS (2010) Effect of europium concentration on densification of transparent Eu:Y2O3 scintillator ceramics using hot pressing. J Am Ceram Soc 93:82–88

    Google Scholar 

  109. Hou X, Zhou S, Jia T, Lin H, Teng H (2011) Effect of Nd concentration on structural and optical properties of Nd:Y2O3 transparent ceramic. J Lumin 131:1953–1958

    Google Scholar 

  110. Mouzon J, Maitre A, Frisk L, Lehto N, Oden M (2009) Fabrication of transparent yttria by HIP and the glass-encapsulation method. J Eur Ceram Soc 29:311–316

    Google Scholar 

  111. Eilers H (2007) Fabrication, optical transmittance, and hardness of IR-transparent ceramics made from nanophase yttria. J Eur Ceram Soc 27:4711–4717

    Google Scholar 

  112. Bezdorozhev O, Borodianska H, Sakka Y, Vasylkiv O (2011) Tough yttria-stabilized zirconia ceramic by low-temperature spark plasma sintering of long-term stored nanopowders. J Nanosci Nanotechnol 11:7901–7909

    Google Scholar 

  113. Yoshida H, Morita K, Kim B-N, Hiraga K, Kodo M, Soga K et al (2008) Densification of nanocrystalline yttria by low temperature spark plasma sintering. J Am Ceram Soc 91:1707–1710

    Google Scholar 

  114. Yoshida H, Morita K, Kim B-N, Hiraga K, Yamanaka K, Soga K et al (2011) Low-temperature spark plasma sintering of yttria ceramics with ultrafine grain size. J Am Ceram Soc 94:3301–3307

    Google Scholar 

  115. Chaim R, Shlayer A, Estournes C (2009) Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering. J Eur Ceram Soc 29:91–98

    Google Scholar 

  116. An L, Ito A, Goto T (2012) Transparent yttria produced by spark plasma sintering at moderate temperature and pressure profiles. J Eur Ceram Soc 32:1035–1040

    Google Scholar 

  117. Zhang HB, Kim BN, Morita K, Yoshida H, Hiraga K, Sakka Y (2011) Fabrication of transparent yttria by high-pressure spark plasma sintering. J Am Ceram Soc 94:3206–3210

    Google Scholar 

  118. Wen L, Sun XD, Lu Q, Xu GX, Hu XZ (2006) Synthesis of yttria nanopowders for transparent yttria ceramics. Opt Mater 29:239–245

    Google Scholar 

  119. Huang YH, Jiang DL, Zhang JX, Lin QL, Huang ZR (2011) Synthesis of mono-dispersed spherical Nd:Y2O3 powder for transparent ceramics. Ceram Int 37:3523–3529

    Google Scholar 

  120. Ikesue A, Kamata K, Yoshida K (1996) Synthesis of transparent Nd-doped HfO2–Y2O3 ceramics using HIP. J Am Ceram Soc 79:359–364

    Google Scholar 

  121. Majima K, Niimi N, Watanabe M, Katsuyama S, Nagai H (1993) Effect of LiF addition on the preparation of transparent Y2O3 by vacuum hot-pressing method. J Jpn Inst Met 57:1221–1226

    Google Scholar 

  122. Hou XR, Zhou SM, Li YK, Li WJ (2010) Effect of ZrO2 on the sinterability and spectral properties of (Yb0.05Y0.95)2O3 transparent ceramic. Opt Mater 32:920–923

    Google Scholar 

  123. Yi Q, Zhou S, Teng H, Lin H, Hou X, Jia T (2012) Structural and optical properties of Tm:Y2O3 transparent ceramic with La2O3, ZrO2 as composite sintering aid. J Eur Ceram Soc 32:381–388

    Google Scholar 

  124. Huang YH, Jiang DL, Zhang JX, Lin QL, Huang ZG (2010) Sintering of transparent yttria ceramics in oxygen atmosphere. J Am Ceram Soc 93:2964–2967

    Google Scholar 

  125. Serivalsatit K, Kokuoz B, Yazgan-Kokuoz B, Kennedy M, Ballato J (2010) Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics. J Am Ceram Soc 93:1320–1325

    Google Scholar 

  126. Gheorghe C, Lupei A, Lupei V, Gheorghe L, Ikesue A (2009) Spectroscopic properties of Ho3+ doped Sc2O3 transparent ceramic for laser materials. J Appl Phys 105:123110

    Google Scholar 

  127. Li JG, Ikegami T, Mori T (2005) Fabrication of transparent, sintered Sc2O3 ceramics. J Am Ceram Soc 88:817–821

    Google Scholar 

  128. Li JG, Ikegami T, Mori T, Yajima Y (2004) Sc2O3 nanopowders via hydroxyl precipitation: effects of sulfate ions on powder properties. J Am Ceram Soc 87:1008–1013

    Google Scholar 

  129. Kuck S, Fornasiero L, Mix E, Huber G (2000) Spectroscopic properties of Cr-doped Sc2O3. J Lumin 87–9:1122–1125

    Google Scholar 

  130. Fornasiero L, Mix E, Peters V, Petermann K, Huber G (1999) New oxide crystals for solid state lasers. Cryst Res Technol 34:255–260

    Google Scholar 

  131. Li JG, Ikegami T, Mori T (2003) Fabrication of transparent Sc2O3 ceramics with powders thermally pyrolyzed from sulfate. J Mater Res 18:1816–1822

    Google Scholar 

  132. Lupei A, Lupei V, Gheorghe C, Ikesue A (2008) Excited states dynamics of Er3+ in Sc2O3 ceramic. J Lumin 128:918–920

    Google Scholar 

  133. Longuet L, Bravo AC, Autissier D, Vissie P, Longuet JL, Lambert S (2009) Preparation of Yb-doped Sc2O3 transparent ceramics for laser applications. In: Dierolf V, Fujiwara Y, Hommerich U, Ruterana P, Zavada JM (eds) Rare-earth doping of advanced materials for photonic applications. Materials Research Society, Warrendale, pp 161–166

    Google Scholar 

  134. Li JG, Ikegami T, Mori T (2004) Solution-based processing of Sc2O3 nanopowders yielding transparent ceramics. J Mater Res 19:733–736

    Google Scholar 

  135. Wang Y, Lu B, Sun X, Sun T, Xu H (2011) Synthesis of nanocrystalline Sc2O3 powder and fabrication of transparent Sc2O3 ceramics. Adv Appl Ceram 110:95–98

    Google Scholar 

  136. Serivalsatit K, Ballato J (2010) Submicrometer grain-sized transparent erbium-doped scandia ceramics. J Am Ceram Soc 93:3657–3662

    Google Scholar 

  137. Trabelsi I, Maalej R, Dammak M, Lupei A, Kamoun M (2010) Crystal field analysis of Er3+ in Sc2O3 transparent ceramics. J Lumin 130:927–931

    Google Scholar 

  138. An LQ, Ito A, Goto T (2011) Two-step pressure sintering of transparent lutetium oxide by spark plasma sintering. J Eur Ceram Soc 31:1597–1602

    Google Scholar 

  139. Wang ZF, Zhang WP, Lin L, You BG, Fu YB, Yin M (2008) Preparation and spectroscopic characterization of Lu2O3: Eu3+ nanopowders and ceramics. Opt Mater 30:1484–1488

    Google Scholar 

  140. An LQ, Ito A, Goto T (2011) Fabrication of transparent lutetium oxide by spark plasma sintering. J Am Ceram Soc 94:695–698

    Google Scholar 

  141. Kan A, Moriyama T, Takahashi S, Ogawa H (2011) Low-temperature sintering and microwave dielectric properties of MgO ceramic with LiF addition. Jpn J Appl Phys 50:09NF2

    Google Scholar 

  142. Rhodes WH, Sellers DJ (1967) Mechanism of pressure sintering MgO with LiF additions. Am Ceram Soc Bull 46:469

    Google Scholar 

  143. Hart PE, Pask JA (1971) Effect of LiF on creep of MgO. J Am Ceram Soc 54:315–316

    Google Scholar 

  144. Itatani K, Tsujimoto T, Kishimoto A (2006) Thermal and optical properties of transparent magnesium oxide ceramics fabricated by post hot-isostatic pressing. J Eur Ceram Soc 26:639–645

    Google Scholar 

  145. Xu GG, Zhang XD, He W, Liu H, Li H, Boughton RI (2006) Preparation of highly dispersed YAG nano-sized powder by co-precipitation method. Mater Lett 60:962–965

    Google Scholar 

  146. Ikesue A, Furusato I, Kamata K (1995) Fabrication of polycrystalline transparent YAG ceramics by a solid-state reaction method. J Am Ceram Soc 78:225–228

    Google Scholar 

  147. Ikesue A, Kinoshita T, Kamata K, Yoshida K (1995) Fabrication and optical properties of high performance polycrystalline Nd-YAG ceramics for solid-state lasers. J Am Ceram Soc 78:1033–1040

    Google Scholar 

  148. Zhang XD, Liu H, He W, Wang JY, Li X, Boughton RI (2005) Novel synthesis of YAG by solvothermal method. J Cryst Growth 275:E1913–E1917

    Google Scholar 

  149. Liu Q, Liu J, Li J, Ivanov M, Medvedev A, Zeng Y et al (2014) Solid-state reactive sintering of YAG transparent ceramics for optical applications. J Alloy Compd 616:81–88

    Google Scholar 

  150. Li JG, Ikegami T, Lee JH, Mori T (2000) Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives. J Am Ceram Soc 83:961–963

    Google Scholar 

  151. Zych E, Brecher C (2000) Temperature dependence of host-associated luminescence from YAG transparent ceramic material. J Lumin 90:89–99

    Google Scholar 

  152. Liu J, Liu K, Wang HS, Gao F, Liao R (2012) Preparation of silicon nitride porous ceramics. In: Pan W, Gong JH (eds) High-performance ceramics IIi, Parts 1 and 2. Trans Tech Publications Ltd, Stafa-Zurich, pp 824–827

    Google Scholar 

  153. Zhou J, Zhang WX, Wang LA, Shen YQ, Li J, Liu WB et al (2011) Fabrication, microstructure and optical properties of polycrystalline Er3+:Y3Al5O12 ceramics. Ceram Int 37:119–125

    Google Scholar 

  154. Li J, Chen Q, Feng GY, Wu WJ, Xiao DQ, Zhu JG (2012) Optical properties of the polycrystalline transparent Nd:YAG ceramics prepared by two-step sintering. Ceram Int 38:S649–S652

    Google Scholar 

  155. Dewith G, Vandijk HJA (1984) Transparent Y3Al5O12 ceramics. Mater Res Bull 19:1669–1674

    Google Scholar 

  156. Liu W, Li J, Jiang B, Zhang D, Pan Y (2012) Effect of La2O3 on microstructures and laser properties of Nd:YAG ceramics. J Alloy Compd 512:1–4

    Google Scholar 

  157. Yang H, Qin X, Zhang J, Ma J, Tang D, Wang S et al (2012) The effect of MgO and SiO2 codoping on the properties of Nd:YAG transparent ceramic. Opt Mater 34:940–943

    Google Scholar 

  158. Appiagyei KA, Messing GL, Dumm JQ (2008) Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics. Ceram Int 34:1309–1313

    Google Scholar 

  159. Stevenson AJ, Li X, Martinez MA, Anderson JM, Suchy DL, Kupp ER et al (2011) Effect of SiO2 on densification and microstructure development in Nd:YAG transparent ceramics. J Am Ceram Soc 94:1380–1387

    Google Scholar 

  160. Liu WB, Zhang WX, Li J, Kou HM, Zhang D, Pan YB (2011) Synthesis of Nd:YAG powders leading to transparent ceramics: the effect of MgO dopant. J Eur Ceram Soc 31:653–657

    Google Scholar 

  161. Chen C, Zhou SM, Lin H, Yi Q (2012) Selection of different sintering aids and heat-treatment of Y2O3 raw powders for Yb3+:Y3Al5O12 transparent ceramics. In: Shao J, Sugioka K, Stolz CJ (eds) Pacific rim laser damage 2011: optical materials for high power lasers, p 820620

    Google Scholar 

  162. Li YK, Zhou SM, Lin H, Hou XR, Li WJ, Teng H et al (2010) Fabrication of Nd:YAG transparent ceramics with TEOS, MgO and compound additives as sintering aids. J Alloy Compd 502:225–230

    Google Scholar 

  163. Chen PL, Chen IW (1996) Sintering of fine oxide powders: I, Microstructural evolution. J Am Ceram Soc 79:3129–3141

    Google Scholar 

  164. Liu WB, Zhang WX, Li J, Kou HM, Shen YH, Wang L et al (2010) Influence of pH values on (Nd + Y): Al molar ratio of Nd:YAG nanopowders and preparation of transparent ceramics. J Alloy Compd 503:525–528

    Google Scholar 

  165. Esposito L, Piancastelli A (2009) Role of powder properties and shaping techniques on the formation of pore-free YAG materials. J Eur Ceram Soc 29:317–322

    Google Scholar 

  166. Serantoni M, Piancastelli A, Costa AL, Esposito L (2012) Improvements in the production of Yb:YAG transparent ceramic materials: spray drying optimisation. Opt Mater 34:995–1001

    Google Scholar 

  167. Liu WB, Zhang WX, Li J, Zhang D, Pan YB (2012) Preparation of spray-dried powders leading to Nd:YAG ceramics: the effect of PVB adhesive. Ceram Int 38:259–264

    Google Scholar 

  168. Gong H, Zhang J, Tang DY, Xie GQ, Huang H, Ma J (2011) Fabrication and laser performance of highly transparent Nd:YAG ceramics from well-dispersed Nd:Y2O3 nanopowders by freeze-drying. J Nanopart Res 13:3853–3860

    Google Scholar 

  169. Rabinovitch Y, Bogicevic C, Karolak F, Tetard D, Dammak H (2008) Freeze-dried nanometric neodymium-doped YAG powders for transparent ceramics. J Mater Process Technol 199:314–320

    Google Scholar 

  170. Yagi H, Takaichi K, Ueda K, Yanagitani T, Karninskii AA (2006) Influence of annealing conditions on the optical properties of chromium-doped ceramic Y3Al5O12. Opt Mater 29:392–396

    Google Scholar 

  171. Li J, Wu Y, Pan Y, Guo J (2006) Fabrication of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser. J Non-Cryst Solids 352:2404–2407

    Google Scholar 

  172. Nishiura S, Tanabe S, Fujioka K, Fujimoto Y (2011) Properties of transparent Ce:YAG ceramic phosphors for white LED. Opt Mater 33:688–691

    Google Scholar 

  173. Feng T, Shi JL, Jiang DY (2006) Preparation and optical properties of transparent Eu3+:Y3Al5(1−x)Sc5xO12 ceramics. J Am Ceram Soc 89:1590–1593

    Google Scholar 

  174. Fu Y, Li J, Liu Y, Liu L, Zhao H, Pan Y (2014) Effect of air annealing on the optical properties and laser performance of Nd:YAG transparent ceramics. Opt Mater Express 4:2108–2115

    Google Scholar 

  175. Zhang W, Lu T, Wei N, Ma B, Li F, Lu Z et al (2012) Effect of annealing on the optical properties of Nd:YAG transparent ceramics. Opt Mater 34:685–690

    Google Scholar 

  176. Yanagida T, Kamada K, Fujimoto Y, Yokota Y, Yoshikawa A, Yagi H et al (2011) Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators. Nucl Instr Meth Phys Res Sect A 631:54–57

    Google Scholar 

  177. Jiang BX, Lu X, Zeng YP, Liu SP, Li J, Liu WB et al (2013) Synthesis and properties of Yb:LuAG transparent ceramics. Phys Status Solidi C 10(6):958–961

    Google Scholar 

  178. Li HL, Liu XJ, Huang LP (2005) Fabrication of transparent cerium-doped lutetium aluminum garnet (LuAG:Ce) ceramics by a solid-state reaction method. J Am Ceram Soc 88:3226–3228

    Google Scholar 

  179. Li HL, Liu XJ, Huang LP (2006) Fabrication of transparent Ce:LuAG ceramics by a solid-state reaction method. J Inorg Mater 21:1161–1166

    Google Scholar 

  180. Liao YK, Jiang DY, Feng T, Zhang N (2007) Preparation, spectroscopic properties and enhanced luminescence of Tb3+-doped LuAG phosphors and transparent ceramics by introduction of Sc3+. J Mater Sci 42:5406–5410

    Google Scholar 

  181. Luo D, Zhang J, Xu C, Lin H, Yang H, Zhu H et al (2013) Mode-locked Yb:LuAG ceramics laser. Phys Status Solidi C 10(6):967–968

    Google Scholar 

  182. Luo D, Zhang J, Xu C, Yang H, Lin H, Zhu H et al (2012) Yb:LuAG laser ceramics: a promising high power laser gain medium. Opt Mater Express 2:1425–1431

    Google Scholar 

  183. Pirri A, Vannini M, Babin V, Nikl M, Toci G (2013) CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic. Laser Phys 23

    Google Scholar 

  184. Shen YQ, Feng XQ, Babin V, Nikl M, Vedda A, Moretti F et al (2013) Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc, La-based isovalent sintering aids. Ceram Int 39:5985–5990

    Google Scholar 

  185. Wagner N, Herden B, Dierkes T, Plewa J, Justel T (2012) Towards the preparation of transparent LuAG:Nd3+ ceramics. J Eur Ceram Soc 32:3085–3089

    Google Scholar 

  186. Zhang WX, Li J, Liu WB, Pan YB, Guo JK (2009) Fabrication and properties of highly transparent Tm3Al5O12 (TmAG) ceramics. Ceram Int 35:2927–2931

    Google Scholar 

  187. Goldstein A (2012) Correlation between MgAl2O4-spinel structure, processing factors and functional properties of transparent parts (progress review). J Eur Ceram Soc 32:2869–2886

    Google Scholar 

  188. du Merac MR, Kleebe HJ, Muller MM, Reimanis IE (2013) Fifty years of research and development coming to fruition; unraveling the complex interactions during processing of transparent magnesium aluminate (MgAl2O4) spinel. J Am Ceram Soc 96:3341–3365

    Google Scholar 

  189. Ganesh I (2013) A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int Mater Rev 58:63–112

    Google Scholar 

  190. Rothman A, Kalabukhov S, Sverdlov N, Dariel MP, Frage N (2014) The effect of grain size on the mechanical and optical properties of spark plasma sintering-processed magnesium aluminate spinel MgAl2O4. Int J Appl Ceram Technol 11:146–153

    Google Scholar 

  191. Sepulveda JL, Loutfy RO, Chang SY, Ibrahim S (2011) High performance spinel ceramics for IR windows and domes. In: Tustison RW (ed) Window and dome technologies and materials, vol XII, p 801604

    Google Scholar 

  192. Bratton RJ (1974) Translucent sintered MgAl2O4. J Am Ceram Soc 57:283–286

    Google Scholar 

  193. Dericioglu AF, Kagawa Y (2003) Effect of grain boundary microcracking on the light transmittance of sintered transparent MgAl2O4. J Eur Ceram Soc 23:951–959

    Google Scholar 

  194. Li JG, Ikegami T, Lee JH, Mori T (2000) Fabrication of translucent magnesium aluminum spinel ceramics. J Am Ceram Soc 83:2866–2868

    Google Scholar 

  195. Dericioglu AF, Boccaccini AR, Dlouhy I, Kagawa Y (2005) Effect of chemical composition on the optical properties and fracture toughness of transparent magnesium aluminate spinel ceramics. Mater Trans 46:996–1003

    Google Scholar 

  196. Wang C, Zhao Z (2009) Transparent MgAl2O4 ceramic produced by spark plasma sintering. Scripta Mater 61:193–196

    Google Scholar 

  197. Morita K, Kim BN, Hiraga K, Yoshida H (2008) Fabrication of transparent MgAl2O4 spinel polycrystal by spark plasma sintering processing. Scripta Mater 58:1114–1117

    Google Scholar 

  198. Meir S, Kalabukhov S, Froumin N, Dariel MP, Frage N (2009) Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. J Am Ceram Soc 92:358–364

    Google Scholar 

  199. Frage N, Cohen S, Meir S, Kalabukhov S, Dariel MP (2007) Spark plasma sintering (SPS) of transparent magnesium-aluminate spinel. J Mater Sci 42:3273–3275

    Google Scholar 

  200. Sokol M, Kalabukhov S, Dariel MP, Frage N (2014) High-pressure spark plasma sintering (SPS) of transparent polycrystalline magnesium aluminate spinel (PMAS). J Eur Ceram Soc 34:4305–4310

    Google Scholar 

  201. Kim BN, Morita K, Lim JH, Hiraga K, Yoshida H (2010) Effects of preheating of powder before spark plasma sintering of transparent MgAl2O4 spinel. J Am Ceram Soc 93:2158–2160

    Google Scholar 

  202. Morita K, Kim BN, Yoshida H, Hiraga K (2009) Spark-plasma-sintering condition optimization for producing transparent MgAl2O4 spinel polycrystal. J Am Ceram Soc 92:1208–1216

    Google Scholar 

  203. Tsukuma K (2006) Transparent MgAl2O4 spinel ceramics produced by HIP post-sintering. J Ceram Soc Jpn 114:802–806

    Google Scholar 

  204. Villalobos GR, Sanghera JS, Aggarwal ID (2005) Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J Am Ceram Soc 88:1321–1322

    Google Scholar 

  205. Krell A, Hutzler T, Klimke J, Potthoff A (2010) Fine-grained transparent spinel windows by the processing of different nanopowders. J Am Ceram Soc 93:2656–2666

    Google Scholar 

  206. DiGiovanni AA, Fehrenbacher L, Roy DW (2005) Hard transparent domes and windows from magnesium aluminate spinel. In: Tustison RW (ed) Window and dome technologies and materials Ix, pp 56–63

    Google Scholar 

  207. Bernard-Granger G, Benameur N, Guizard C, Nygren M (2009) Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scripta Mater 60:164–167

    Google Scholar 

  208. Kleebe HJ, Reimanis IE, Cook RL (2005) Processing and microstructure characterization of transparent spinel monoliths. In: DiAntonio CB (ed) Characterization and modeling to control sintered ceramic microstructures and properties, pp 61–68

    Google Scholar 

  209. Goldstein A, Goldenberg A, Yeshurun Y, Hefetz M (2008) Transparent MgAl2O4 spinel from a powder prepared by flame spray prolysis. J Am Ceram Soc 91:4141–4144

    Google Scholar 

  210. Sutorik AC, Gilde G, Swab JJ, Cooper C, Gamble R, Shanholtz E (2012) The production of transparent MgAl2O4 ceramic using calcined powder mixtures of Mg(OH)2 and γ-Al2O3 or AlOOH. Int J Appl Ceram Technol 9:575–587

    Google Scholar 

  211. Ping LR, Azad AM, Dung TW (2001) Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained (SHS) technique. Mater Res Bull 36:1417–1430

    Google Scholar 

  212. du Merac MR, Reimanis IE, Smith C, Kleebe H-J, Mueller MM (2013) Effect of impurities and LiF additive in hot-pressed transparent magnesium aluminate spinel. Int J Appl Ceram Technol 10:E33–E48

    Google Scholar 

  213. Reimanis IE, Kleebe H-J (2007) Reactions in the sintering of MgAl2O4 spinel doped with LiF. Int J Mater Res 98:1273–1278

    Google Scholar 

  214. Reimanis IE, Rozenburg K, Kleebe HJ, Cook RL (2005) Fabrication of transparent spinel: the role of impurities. In: Tustison RW (ed) Window and dome technologies and materials IX, pp 48–55

    Google Scholar 

  215. Rozenburg K, Reimanis IE, Kleebe HJ, Cook RL (2007) Chemical interaction between LiF and MgAl2O4 spinel during sintering. J Am Ceram Soc 90:2038–2042

    Google Scholar 

  216. Rozenburg K, Reimanis IE, Kleebe HJ, Cook RL (2008) Sintering kinetics of a MgAl2O4 spinel doped with LiF. J Am Ceram Soc 91:444–450

    Google Scholar 

  217. Sutorik AC, Gilde G, Cooper C, Wright J, Hilton C (2012) The effect of varied amounts of LiF sintering aid on the transparency of alumina rich spinel ceramic with the composition MgO-1.5 Al2O3. J Am Ceram Soc 95:1807–1810

    Google Scholar 

  218. Sutorik AC, Gilde G, Swab JJ, Cooper C, Gamble R, Shanholtz E (2012) Transparent solid solution magnesium aluminate spinel polycrystalline ceramic with the alumina-rich composition MgO-1.2 Al2O3. J Am Ceram Soc 95:636–643

    Google Scholar 

  219. Krell A, Waetzig K, Klimke J (2011) Effects and elimination of nanoporosity in transparent sintered spinel (MgAl2O4). In: Window and dome technologies and materials XII, vol 8016, p 801602

    Google Scholar 

  220. Harris DC (2005) History of development of polycrystalline optical spinel in the U.S. In: Tustison RW (ed) Window and dome technologies and materials IX. Spie-Int Soc Optical Engineering, Bellingham, pp 1–22

    Google Scholar 

  221. Gledhill AD, Li DS, Mroz T, Goldman LM, Padture NP (2012) Strengthening of transparent spinel/Si3N4 nanocomposites. Acta Mater 60:1570–1575

    Google Scholar 

  222. Wollmershauser JA, Feigelson BN, Gorzkowski EP, Ellis CT, Goswami R, Qadri SB et al (2014) An extended hardness limit in bulk nanoceramics. Acta Mater 69:9–16

    Google Scholar 

  223. Jiang H, Zou YK, Chen Q, Li KK, Zhang R, Wang Y et al (2005) Transparent electro-optic ceramics and devices. In: Ming H, Zhang XP, Chen MY (eds) Optoelectronic devices and integration, Pts 1 and 2. Spie-Int Soc Optical Engineering, Bellingham, pp 380–394

    Google Scholar 

  224. Sun P, Xu CN, Akiyama M, Watanabe T (1999) Controlled oxygen partial pressure sintering of (Pb, La)(Zr, Ti)O3 ceramics. J Am Ceram Soc 82:1447–1450

    Google Scholar 

  225. Abe Y, Kakegawa K (2002) Fabrication of optically transparent lead lanthanum zirconate titanate ((Pb, La)(Zr, Ti)O3) ceramics by a three-stage-atmosphere-sintering technique. J Am Ceram Soc 85:473–475

    Google Scholar 

  226. Kong LB, Ma J, Zhang TS, Zhang RF (2002) Transparent lead lanthanum zirconate titanate ceramics derived from oxide mixture via a repeated annealing process. J Mater Res 17:929–932

    Google Scholar 

  227. Wu YJ, Li J, Kimura R, Uekawa N, Kakegawa K (2005) Effects of preparation conditions on the structural and optical properties of spark plasma-sintered PLZT (8/65/35) ceramics. J Am Ceram Soc 88:3327–3331

    Google Scholar 

  228. Colla EV, Koroleva EY, Okuneva NM, Vakhrushev SB (1995) Long-time relaxation of the dielectric response in lead magnoniobate. Phys Rev Lett 74:1681–1684

    Google Scholar 

  229. Qiao L, Ye Q, Gan JL, Cai HW, Qu RH (2011) Optical characteristics of transparent PMNT ceramic and its application at high speed electro-optic switch. Opt Commun 284:3886–3890

    Google Scholar 

  230. Shvartsman VV, Kholkin AL, Orlova A, Kiselev D, Bogomolov AA, Sternberg A (2005) Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl Phys Lett 86:202937

    Google Scholar 

  231. Shvartsman VV, Kholkin AL, Verdier C, Lupascu DC (2005) Fatigue-induced evolution of domain structure in ferroelectric lead zirconate titanate ceramics investigated by piezoresponse force microscopy. J Appl Phys 98:094109

    Google Scholar 

  232. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Google Scholar 

  233. Kamzina LS, Ruan W, Li GR, Zeng JT (2012) Transparent ferroelectric ceramics PbMg1/3Nb2/3O3−xPbZr0.53Ti0.47O3: dielectric and electro-optical properties. Phys Solid State 54:2024–2029

    Google Scholar 

  234. Kamzina LS, Wei R, Zeng JT, Li GR (2011) Effect of the La concentration on the dielectric and optical properties of the transparent ferroelectric ceramics 75PbMg1/3Nb2/3O3-25PbTiO3. Phys Solid State 53:1608–1613

    Google Scholar 

  235. Tong XL, Lin K, Lv DJ, Yang MH, Liu ZX, Zhang DS (2009) Optical properties of PMN-PT thin films prepared using pulsed laser deposition. Appl Surf Sci 255:7995–7998

    Google Scholar 

  236. Ruan W, Li GR, Zeng JT, Bian JJ, Kamzina LS, Zeng HR et al (2010) Large electro-optic effect in La-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramic by two-stage sintering. J Am Ceram Soc 93:2128–2131

    Google Scholar 

  237. Wei ZH, Huang YL, Tsuboi T, Nakai Y, Zeng JT, Li GR (2012) Optical characteristics of Er3+-doped PMN-PT transparent ceramics. Ceram Int 38:3397–3402

    Google Scholar 

  238. Ganesamoorthy S, Singh G, Bhaumik I, Karnal AK, Tiwari VS, Kitamura K et al (2005) Growth of relaxor ferroelectric single crystals PbZn1/3Nb2/3O3 (PZN) by high temperature solution growth. Ferroelectrics 326:19–23

    Google Scholar 

  239. Wan S, Lynch CS (2001) Characterization of PZN single crystals. In: Streiffer SK, Gibbons BJ, Tsurumi T (eds) Proceedings of the 2001 12th IEEE international symposium on applications of ferroelectrics, vols I and II, pp 347–349

    Google Scholar 

  240. Kamzina LS, Krainik NN (1998) Electric-field-induced phase transition in single-crystal lead zinc niobate. Phys Solid State 40:485–488

    Google Scholar 

  241. Mulvihill ML, Cross LE, Cao WW, Uchino K (1997) Domain-related phase transitionlike behavior in lead zinc niobate relaxor ferroelectric single crystals. J Am Ceram Soc 80:1462–1468

    Google Scholar 

  242. Yin QR, Ding AL, Zheng XS, Qiu PS, Shen MR, Cao WW (2004) Preparation and characterization of transparent PZN-PLZT ceramics. J Mater Res 19:729–732

    Google Scholar 

  243. Zhou LJ, Zhao Z, Zimmermann A, Aldinger F, Nygren M (2004) Preparation and properties of lead zirconate stannate titanate sintered by spark plasma sintering. J Am Ceram Soc 87:606–611

    Google Scholar 

  244. Li K, Li FL, Wang Y, Kwok KW, Chan HLW (2011) Hot-pressed K0.48Na0.52Nb1−xBixO3 (x = 0.05-0.15) lead-free ceramics for electro-optic applications. Mater Chem Phys 131:320–324

    Google Scholar 

  245. Li FL, Kwok KW (2013) Fabrication of transparent electro-optic (K0.5Na0.5)(1−x)LixNb1−xBixO3 lead-free ceramics. J Eur Ceram Soc 33:123–130

    Google Scholar 

  246. Shi YX, Shen J, Zhou J, Xu J, Chen W, Qi YY et al (2015) Structure and optical properties of Sn4+ doped Ba(Mg1/3Nb2/3)O3 transparent ceramics. Ceram Int 41:253–257

    Google Scholar 

  247. Huang YH, Jiang DL, Zhang JX, Lin QL (2010) Fabrication of Sn4+ doped Ba(Mg1/3Ta2/3)O3 transparent ceramics by a solid state reaction method. Ceram Int 36:1615–1619

    Google Scholar 

  248. Kintaka Y, Kuretake S, Tanaka N, Kageyama K, Takagi H (2010) Crystal structures and optical properties of transparent ceramics based on complex perovskite Ba(M4+, B12+, B25+)O3 (M4+=Ti, Sn, Zr, Hf; B12+=Mg, Zn; B25+=Ta, Nb). J Am Ceram Soc 93:1114–1119

    Google Scholar 

  249. Schneider H, Schreuer J, Hildmann B (2008) Structure and properties of mullite—a review. J Eur Ceram Soc 28:329–344

    Google Scholar 

  250. Aramaki S, Roy R (1962) Revised phase diagram for the systhem Al2O3–SiO2. J Am Ceram Soc 45:229–242

    Google Scholar 

  251. Aksay IA, Dabbs DM, Sarikaya M (1991) Mullite for structural, electronic and optical applications. J Am Ceram Soc 74:2343–2358

    Google Scholar 

  252. Ohashi M, Iida Y, Wada S (2000) Mullite-based substrates for polycrystalline silicon thin-film solar cells. J Ceram Soc Jpn 108:105–107

    Google Scholar 

  253. Bourdais S, Mazel F, Fantozzi G, Slaoui A (1999) Silicon deposition on mullite ceramic substrates for thin-film solar cells. Prog Photovoltaics 7:437–447

    Google Scholar 

  254. Slaoui A, Pihan E, Focsa A (2006) Thin-film silicon solar cells on mullite substrates. Sol Energy Mater Sol Cells 90:1542–1552

    Google Scholar 

  255. Focsa A, Gordon I, Auger JM, Slaoui A, Beaucarne G, Poortmans J et al (2008) Thin film polycrystalline silicon solar cells on mullite ceramics. Renew Energy 33:267–272

    Google Scholar 

  256. Mazdiyas KS, Brown LM (1972) Synthesis and mechanical properties of stoichiometric aluminum silicate (mullite). J Am Ceram Soc 55:548–552

    Google Scholar 

  257. Prochazka S, Klug FJ (1983) Infrared-transparent mullite ceramic. J Am Ceram Soc 66:874–880

    Google Scholar 

  258. Ohashi M, Tabata H, Abe O, Kanzaki S, Mitachi S, Kumazawa T (1987) Preparation of tranlucent mullite ceramics. J Mater Sci Lett 6:528–530

    Google Scholar 

  259. Schneider H, Schmucker M, Ikeda K, Kaysser WA (1993) Optically translucent mullite ceramics. J Am Ceram Soc 76:2912–2914

    Google Scholar 

  260. An L, Ito A, Goto T (2012) Effect of calcination temperature on the fabrication of transparent lutetium titanate by spark plasma sintering. Ceram Int 38:4973–4977

    Google Scholar 

  261. An L, Ito A, Goto T (2011) Highly transparent lutetium titanium oxide produced by spark plasma sintenng. J Eur Ceram Soc 31:237–240

    Google Scholar 

  262. An LQ, Ito A, Goto T (2011) Effects of sintering and annealing temperature on fabrication of transparent Lu2Ti2O7 by spark plasma sintering. J Am Ceram Soc 94:3851–3855

    Google Scholar 

  263. An LQ, Ito A, Goto T (2011) Fabrication of transparent La2Zr2O7 by reactive spark plasma sintering. In: Goto T, Akatsu T (eds) Advanced engineering ceramics and composites. Trans Tech Publications Ltd, Stafa-Zurich, pp 135–138

    Google Scholar 

  264. An LQ, Ito A, Goto T (2013) Fabrication of transparent Lu2Hf2O7 by reactive spark plasma sintering. Opt Mater 35:817–819

    Google Scholar 

  265. An LQ, Ito A, Goto T (2013) Transparent Lu3NbO7 bodies prepared by reactive spark plasma sintering and their optical and mechanical properties. Ceram Int 39:383–387

    Google Scholar 

  266. An L, Ito A, Goto T (2011) Fabrication of transparent Lu3NbO7 by spark plasma sintering. Mater Lett 65:3167–3169

    Google Scholar 

  267. Wang Z, Zhou G, Qin X, Yang Y, Zhang G, Menke Y et al (2013) Fabrication of LaGdZr2O7 transparent ceramic. J Eur Ceram Soc 33:643–646

    Google Scholar 

  268. Goldstein A, Yeshurun Y, Vulfson M, Kravits H (2012) Fabrication of transparent polycrystalline ZnAl2O4-A new optical bulk ceramic. J Am Ceram Soc 95:879–882

    Google Scholar 

  269. Kim BN, Hiraga K, Jeong A, Hu C, Suzuki TS, Yun JD et al (2014) Transparent ZnAl2O4 ceramics fabricated by spark plasma sintering. J Ceram Soc Jpn 122:784–787

    Google Scholar 

  270. Xu Y, Fu P, Zhang BH, Gao J, Zhang L, Wang XH (2014) Optical properties of transparent ZnAl2O4 ceramics: a new transparent material prepared by spark plasma sintering. Mater Lett 123:142–144

    Google Scholar 

  271. Chesnaud A, Bogicevic C, Karolak F, Estournes C, Dezanneau G (2007) Preparation of transparent oxyapatite ceramics by combined use of freeze-drying and spark-plasma sintering. Chem Commun 1550–1552

    Google Scholar 

  272. Shen Y, Xu J, Tok A, Tang D, Khor KA, Dong Z (2010) Development of translucent oxyapatite ceramics by spark plasma sintering. J Am Ceram Soc 93:3060–3063

    Google Scholar 

  273. Allix M, Alahrache S, Fayon F, Suchomel M, Porcher F, Cardinal T et al (2012) Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass. Adv Mater 24:5570–5575

    Google Scholar 

  274. Alahrache S, Al Saghir K, Chenu S, Veron E, Meneses DDS, Becerro AI et al (2013) Perfectly transparent Sr3Al2O6 polycrystalline ceramic elaborated from glass crystallization. Chem Mater 25:4017–4024

    Google Scholar 

  275. Al Saghir K, Chenu S, Veron E, Fayon F, Suchomel M, Genevois C et al (2015) Transparency through structural disorder: a new concept for innovative transparent ceramics. Chem Mater 27:508–514

    Google Scholar 

  276. He LF, Fan GH, Lei MY, Lou ZL, Zheng SW, Su CY et al (2013) Preparation of MgAl2O4/Ce:YAG transparent ceramics by hot-pressed sintering and its microstructure. Rare Metal Mater Eng 42:463–466

    Google Scholar 

  277. He LF, Fan GH, Lei MY, Lou ZL, Chen ZW, Xiao Y et al (2013) Preparation and optical properties of MgAl2O4/Ce:YAG transparent ceramics. Spectrosc Spectral Anal 33:1175–1179

    Google Scholar 

  278. McCauley JW, Patel P, Chen MW, Gilde G, Strassburger E, Paliwal B et al (2009) AlON: a brief history of its emergence and evolution. J Eur Ceram Soc 29:223–236

    Google Scholar 

  279. McCauley JW, Corbin ND (1979) Phase-relations and reaction sintering of transparent cubic aluminium oxynitride spinel (AlON). J Am Ceram Soc 62:476–479

    Google Scholar 

  280. Kim YW, Park BH, Park HC, Lee YB, Oh KD, Riley FL (1998) Sintering, microstructure, and mechanical properties of AlON-AlN particulate composites. Br Ceram Trans 97:97–104

    Google Scholar 

  281. Zientara D, Bucko MM, Lis J (2007) Alon-based materials prepared by SHS technique. J Eur Ceram Soc 27:775–779

    Google Scholar 

  282. Rafaniello W, Cutler IB (1981) Preparation of sinterable cubic aluminum oxynitride by the carbothermal intridation of lauminum-oxide. J Am Ceram Soc 64:C128–C

    Google Scholar 

  283. Yuan XY, Liu XJ, Zhang F, Wang SW (2010) Synthesis of γ-AlON powders by a combinational method of carbothermal reduction and solid-state reaction. J Am Ceram Soc 93:22–24

    Google Scholar 

  284. Jin XH, Gao L, Sun J, Liu YQ, Gui LH (2012) Highly transparent AlON pressurelessly sintered from powder synthesized by a novel carbothermal nitridation method. J Am Ceram Soc 95:2801–2807

    Google Scholar 

  285. Su M, Zhou Y, Wang K, Yang Z, Cao Y, Hong M (2015) Highly transparent AlON sintered from powder synthesized by direct nitridation. J Eur Ceram Soc 35:1173–1178

    Google Scholar 

  286. Zhang N, Liang B, Wang XY, Kan HM, Zhu KW, Zhao XJ (2011) The pressureless sintering and mechanical properties of AlON ceramic. Mater Sci Eng A-Struct Mater Prop Microstruct Process 528:6259–6262

    Google Scholar 

  287. Cheng JP, Agrawal D, Zhang YJ, Roy R (2001) Microwave reactive sintering to fully transparent aluminum oxynitride (AlON) ceramics. J Mater Sci Lett 20:77–79

    Google Scholar 

  288. Zientara D, Bucko MM, Lis J (2007) Dielectric properties of aluminium nitride-γ-AlO materials. J Eur Ceram Soc 27:4051–4054

    Google Scholar 

  289. Kumar RS, Rajeswari K, Praveen B, Hareesh UNS, Johnson R (2010) Processing of aluminum oxynitride through aqueous colloidal forming techniques. J Am Ceram Soc 93:429–435

    Google Scholar 

  290. Clay D, Poslusny D, Flinders M, Jacobs SD, Cutler RA (2006) Effect of LiAl5O8 additions on the sintering and optical transparency of LiAlON. J Eur Ceram Soc 26:1351–1362

    Google Scholar 

  291. Sahin FC, Kanbur HE, Apak B (2012) Preparation of AlON ceramics via reactive spark plasma sintering. J Eur Ceram Soc 32:925–929

    Google Scholar 

  292. Qi JQ, Wang YZ, Lu TC, Yu Y, Pan L, Wei NA et al (2011) Preparation and light transmission properties of AlON ceramics by the two-step method with nanosized Al2O3 and AlN. Metall Mater Trans A 42A:4075–4079

    Google Scholar 

  293. Yuan XY, Zhang F, Liu XJ, Zhang Z, Wang SW (2011) Fabrication of transparent AlON ceramics by solid-state reaction sintering. J Inorgan Mater 26:499–502

    Google Scholar 

  294. Zhou YP, Wang DF, Zhuang HR, Wen SL, Guo JK (1998) Study of translucent AlN ceramics. J Inorgan Mater 13:256

    Google Scholar 

  295. Xiong Y, Wang H, Fu Z (2013) Transient liquid-phase sintering of AlN ceramics with CaF2 additive. J Eur Ceram Soc 33:2199–2205

    Google Scholar 

  296. Merkle LD, Sutorik AC, Sanamyan T, Hussey LK, Gilde G, Cooper C et al (2012) Fluorescence of Er3+:AlN polycrystalline ceramic. Opt Mater Express 2:78–91

    Google Scholar 

  297. Xiong Y, Fu ZY, Wang H, Wang YC, Zhang JY, Zhang QJ (2008) Microstructure and properties of translucent Mg-sialon ceramics prepared by spark plasma sintering. Mater Sci Eng A 488:475–481

    Google Scholar 

  298. Joshi B, Gyawali G, Wang H, Sekino T, Lee SW (2013) Thermal and mechanical properties of hot pressed translucent Y2O3 doped Mg-α/β-Sialon ceramics. J Alloy Compd 557:112–119

    Google Scholar 

  299. Joshi B, Lee HH, Kim YH, Fu Z, Niihara K, Lee SW (2012) Hot pressed translucent (Mg, Y)-alpha/beta-Sialon ceramics. Mater Lett 80:178–180

    Google Scholar 

  300. Shan Y, Wang G, Liu G, Sun X, Xu J, Li J (2014) Hot-pressing of translucent Y-α-Sialon ceramics using ultrafine mixed powders prepared by planetary ball mill. Ceram Int 40:11743–11749

    Google Scholar 

  301. Su XL, Wang PL, Chen WW, Zhu B, Cheng YB, Yan DS (2004) Translucent α-Sialon ceramics by hot pressing. J Am Ceram Soc 87:730–732

    Google Scholar 

  302. Joshi B, Li B, Kshetri YK, Wang H, Lee SW (2014) IR transparent hot pressed Mg-α/β-Sialon:Ba2+ ceramics. Ceram Int 40:13041–13047

    Google Scholar 

  303. Yang W, Hojo J, Enomoto N, Tanaka Y, Inada M (2013) Influence of sintering aid on the tranlucency of spark plasma-sintered silicon nitride ceramics. J Am Ceram Soc 96:2556–2561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Bing Kong .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kong, L.B. et al. (2015). Transparent Ceramic Materials. In: Transparent Ceramics. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18956-7_2

Download citation

Publish with us

Policies and ethics