Skip to main content

Technical Applications of the Physics of High Energy Densities

  • Chapter
Extreme States of Matter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 216))

  • 1944 Accesses

Abstract

In the first three sections of this chapter we address the most interesting of the numerous technical applications of high energy density physics—controlled thermonuclear fusion with magnetic and inertial confinement as well as thermonuclear fusion with the use of heavy ion beams. We touch upon the development of compact laser-plasma accelerators of high-energy electrons and ions based on new-generation femtosecond lasers. In the last section of the chapter we consider the use in experiments of synchrotron radiation sources, free-electron lasers, high-intensity sources of terahertz radiation pulses, as well as plasmas in accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fair project web site

    Google Scholar 

  2. New flash brochure, http://hasylab.desy.de/news_events/announcements/new_flash_brochure/

  3. The European X-Ray Laser Project XFEL http://xfel.desy.de/

  4. ITER Physics Basic, vol. 39 (1999)

    Google Scholar 

  5. Albert, F., Phuoc, K.T., Shah, R., et al.: Full characterization of a laser-produced keV X-ray betatron source. Plasma Phys. Control. Fusion 50(12), 124008 (2008)

    Article  ADS  Google Scholar 

  6. Andreev, N.E., Gorbunov, L.M.: Laser-plasma acceleration of electrons. Phys. Usp. 42(1), 49 (1999)

    Article  ADS  Google Scholar 

  7. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: The theory of laser self-resonant wake field excitation. Phys. Scr. 49(1), 101–109 (1994)

    Article  ADS  Google Scholar 

  8. Andreev, N.E., Kirsanov, V.I., Gorbunov, L.M.: Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2(6), 2573–2582 (1995)

    Article  ADS  Google Scholar 

  9. Andreev, N.E., Kirsanov, V.I., Sakharov, A.S., et al.: On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator. Phys. Plasmas 3(8), 3121–3128 (1996)

    Article  ADS  Google Scholar 

  10. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., et al.: Structure of the wake field in plasma channels. Phys. Plasmas 4(4), 1145–1153 (1997)

    Article  ADS  Google Scholar 

  11. Andreev, N.E., Gorbunov, L.M., Kirsanov, V.I., Sakharov, A.S.: Self-modulation of high-intensity laser pulses in underlense plasmas and plasma channels. AIP Conf. Proc. 396(1), 61–74 (1997)

    Article  ADS  Google Scholar 

  12. Andreev, N.E., Chizhonkov, E.V., Frolov, A.A., Gorbunov, L.M.: On laser wakefield acceleration in plasma channels. Nucl. Instrum. Methods Phys. Res. A 410(3), 469–476 (2002)

    Article  ADS  Google Scholar 

  13. Andreev, N.E., Cros, B., Gorbunov, L.M., et al.: Laser wakefield structure in a plasma column created in capillary tubes. Phys. Plasmas 9(9), 3999–4009 (2002)

    Article  ADS  Google Scholar 

  14. Andreev, N.E., Nishida, Y., Yugami, N.: Propagation of short intense laser pulses in gas-filled capillaries. Phys. Rev. E 65(5), 056407 (2002)

    Article  ADS  Google Scholar 

  15. Andreev, N.E., Kuznetsov, S.V., Cros, B., et al.: Laser wakefield acceleration of supershort electron bunches in guiding structures. Plasma Phys. Control. Fusion 53(1), 014001 (2011)

    Article  ADS  Google Scholar 

  16. Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69(15), 2204–2207 (1992)

    Article  ADS  Google Scholar 

  17. Antonsen Jr., T.M., Mora, P.: Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Fluids B 5(5), 1440–1452 (1993)

    Article  ADS  Google Scholar 

  18. Antonsen Jr., T.M., Palastro, J., Milchberg, H.M.: Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14(3), 033107 (2007)

    Article  ADS  Google Scholar 

  19. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  20. Atzeni, S., Temporal, M., Honrubia, J.J.: A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42(3), L1–L4 (2002)

    Article  ADS  Google Scholar 

  21. Azizov, E.A.: Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks). Phys. Usp. 55(2), 190–203 (2012)

    Article  ADS  Google Scholar 

  22. Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., et al.: Research into the advanced experimental methods for precision ion stopping range measurements in matter. Laser Part. Beams 21(1), 1–6 (2003)

    Article  ADS  Google Scholar 

  23. Bakunov, M.I., Bodrov, S.B., Maslov, A.V., Sergeev, A.M.: Two-dimensional theory of Cherenkov radiation from short laser pulses in a magnetized plasma. Phys. Rev. E 70(1), 016401 (2004)

    Article  ADS  Google Scholar 

  24. Bamber, C., Boege, S.J., Koffas, T., et al.: Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60(9), 092004 (1999)

    Google Scholar 

  25. Batani, D., Jafer, R., Redaelli, R., et al.: Effects of laser prepulse on proton generation. Nucl. Instrum. Methods Phys. Res. A 620(1), 76–82 (2010)

    Article  ADS  Google Scholar 

  26. Belyaev, V.S., Krainov, V.P., Lisitsa, V.S., Matafonov, A.P.: Generation of fast charged particles and superstrong magnetic fields in the interaction of ultrashort high-intensity laser pulses with solid targets. Phys. Usp. 51(8), 793 (2008)

    Article  ADS  Google Scholar 

  27. Berezhiani, V.I., Murusidze, I.G.: e+e – Pair production by a focused laser pulse in vacuum. Phys. Lett. A 148(6–7), 338–340 (1990)

    Google Scholar 

  28. Berg, L., Skupin, S., Nuter, R., et al.: Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70(10), 1633 (2007)

    Article  ADS  Google Scholar 

  29. Betti, R., Chang, P.Y., Spears, B.K., et al.: Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement. Phys. Plasmas 17(5), 058102 (2010)

    Article  ADS  Google Scholar 

  30. Bieniosek, F., Barnard, J., Leitner, M., et al.: Diagnostics for near-term warm dense matter experiments. Nucl. Instrum. Methods Phys. Res. A 577(1–2), 284–288 (2007)

    Article  ADS  Google Scholar 

  31. Bulanov, S.V., Kirsanov, V.I., Sakharov, A.S.: Excitation of ultrarelativistic plasma waves by pulse of electromagnetic radiation. JETP Lett. 50(4), 198 (1991)

    ADS  Google Scholar 

  32. Bulanov, S.S., Bychenkov, V.Y., Chvykov, V., et al.: Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17(4), 043105 (2010)

    Article  ADS  Google Scholar 

  33. Bulanov, S.V., Echkina, E.Y., Esirkepov, T.Z., et al.: Unlimited ion acceleration by radiation pressure. Phys. Rev. Lett. 104, 135003 (2010)

    Article  ADS  Google Scholar 

  34. Bychenkov, V.Y., Rozmus, W., Maksimchuk, A., et al.: Fast ignitor concept with light ions. Plasma Phys. Rep. 27(12), 1017–1020 (2001)

    Article  ADS  Google Scholar 

  35. Bystrov, A.M., Vvedenskii, N.V., Gildenburg, V.B.: Generation of terahertz radiation upon the optical breakdown of a gas. JETP Lett. 82(12), 753–757 (2005)

    Article  ADS  Google Scholar 

  36. Callahan, D.A., Meezan, N.B., Glenzer, S.H., et al.: The velocity campaign for ignition on NIF. Phys. Plasmas 19(5), 056305 (2012)

    Article  ADS  Google Scholar 

  37. Carr, G.L., Martin, M.C., McKinney, W.R., et al.: High-power terahertz radiation from relativistic electrons. Nature 420(6912), 153–156 (2002)

    Article  ADS  Google Scholar 

  38. Carr, G.L., Martin, M.C., McKinney, W.R., et al.: Very high power THz radiation at Jefferson Lab. Phys. Med. Biol. 47(21), 3761–3764 (2002)

    Article  Google Scholar 

  39. Cavailler, C.: Inertial fusion with the LMJ. Plasma Phys. Control. Fusion 47(12B), B389–B403 (2005)

    Article  Google Scholar 

  40. Chalupský, J., Juha, L., Hájková, V., et al.: Non-thermal desorption/ablation of molecular solids induced by ultra-short soft X-ray pulses. Opt. Express 17(1), 208–217 (2009)

    Article  ADS  Google Scholar 

  41. Chang, P., Betti, R., Spears, B.K., et al.: Generalized measurable ignition criterion for inertial confinement fusion. Phys. Rev. Lett. 104, 135002 (2010)

    Article  ADS  Google Scholar 

  42. Chapman, H.N., Fromme, P., Barty, A., et al.: Femtosecond X-ray protein nanocrystallography. Nature 470(2), 73–77 (2011)

    Article  ADS  Google Scholar 

  43. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1, 2nd edn. Springer, New York (1984)

    Google Scholar 

  44. Chen, L.M., Liu, F., Wang, W.M., et al.: Intense high-contrast femtosecond K-shell X-ray source from laser-driven Ar clusters. Phys. Rev. Lett. 104, 215004 (2010)

    Article  ADS  Google Scholar 

  45. Clark, T.R., Milchberg, H.M.: Optical mode structure of the plasma waveguide. Phys. Rev. E 61(2), 1954–1965 (2000)

    Article  ADS  Google Scholar 

  46. Clark, E.L., Krushelnick, K., Davies, J.R., et al.: Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84(4), 670–673 (2000)

    Article  ADS  Google Scholar 

  47. Clark, D.S., Haan, S.W., Cook, A.W., et al.: Short-wavelength and three-dimensional instability evolution in national ignition facility ignition capsule designs. Phys. Plasmas 18(8), 082701 (2011)

    Article  ADS  Google Scholar 

  48. Colgan, J., Abdallah Jr., J., Faenov, A.Y., et al.: Observation and modeling of high resolution spectral features of the inner-shell X-ray emission produced by 10−10 contrast femtosecond-pulse laser irradiation of argon clusters. High Energy Density Phys. 7(2), 77–83 (2011)

    Article  ADS  Google Scholar 

  49. Collins, S.H., et al.: In: The 17th APS Shock Compression of Condensed Matter, Chicago (2011)

    Google Scholar 

  50. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441(2–4), 47–189 (2007)

    Article  ADS  Google Scholar 

  51. Courtois, C., Couairon, A., Cros, B., et al.: Propagation of intense ultrashort laser pulses in a plasma filled capillary tube: simulations and experiments. Phys. Plasmas 8(7), 3445–3456 (2001)

    Article  ADS  Google Scholar 

  52. Cros, B., Courtois, C., Malka, G., et al.: Excitation of accelerating wakefields in inhomogeneous plasmas. IEEE Trans. Plasma Sci. 28(4), 1071–1077 (2000)

    Article  ADS  Google Scholar 

  53. Cuneo, M.E., Vesey, R.A., Bennett, G.R., et al.: Progress in symmetric ICF capsule implosions and wire-array Z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 48(2), R1–R35 (2006)

    Article  ADS  Google Scholar 

  54. Decker, C.D., Mori, W.B., Tzeng, K.C., Katsouleas, T.C.: Modeling single-frequency laser-plasma acceleration using particle-in-cell simulations: the physics of beam breakup. IEEE Trans. Plasma Sci. 24(2), 379–392 (1996)

    Article  ADS  Google Scholar 

  55. DESY: PETRA III: http://petraiii.desy.de/

  56. Didenko, A., Rashchikov, V., Fortov, V.: On possibility of high-power terahertz emission from target under the action of powerful laser pulses. Tech. Phys. Lett. 37, 256–258 (2011). doi:10.1134/S1063785011030205

    Article  ADS  Google Scholar 

  57. Ditmire, T., Tisch, J.W.G., Springate, E., et al.: High-energy ions produced in explosions of superheated atomic clusters. Nature 386(6620), 54–56 (1997)

    Article  ADS  Google Scholar 

  58. Ditmire, T., Springate, E., Tisch, J.W., et al.: Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57(1), 369–382 (1998)

    Article  ADS  Google Scholar 

  59. Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398(6727), 489–492 (1999)

    Article  ADS  Google Scholar 

  60. Ditmire, T., Zweiback, J., Yanovsky, V.P., et al.: Nuclear fusion in gases of deuterium clusters heated with a femtosecond laser. Phys. Plasmas 7(5), 1993–1998 (2000)

    Article  ADS  Google Scholar 

  61. Döppner, T., Thomas, C.A., Divol, L., et al.: Direct measurement of energetic electrons coupling to an imploding low-adiabat inertial confinement fusion capsule. Phys. Rev. Lett. 108, 135006 (2012)

    Article  ADS  Google Scholar 

  62. Dorranian, D., Starodubtsev, M., Kawakami, H., et al.: Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction. Phys. Rev. E 68(2), 026409 (2003)

    Article  ADS  Google Scholar 

  63. Douglas, D.R., Jordan, K.C., Merminga, L., et al.: Experimental investigation of multibunch, multipass beam breakup in the Jefferson Laboratory free electron laser upgrade driver. Phys. Rev. ST Accel. Beams 9(6), 064403 (2006)

    Article  ADS  Google Scholar 

  64. Doumy, G., Roedig, C., Son, S.K., et al.: Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011)

    Article  ADS  Google Scholar 

  65. Durfee III, C.G., Milchberg, H.M.: Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71(15), 2409–2412 (1993)

    Article  ADS  Google Scholar 

  66. Dzelzainis, T., Chalupsky, J., Fajardo, M., et al.: Plasma emission spectroscopy of solids irradiated by intense XUV pulses from a free electron laser. High Energy Density Phys. 6(1), 109–112 (2010)

    Article  ADS  Google Scholar 

  67. Echkina, E., Inovenkov, I., Esirkepov, T., et al.: Dependence of the ion energy on the parameters of the laser pulse and target in the radiation-pressure-dominated regime of acceleration. Plasma Phys. Rep. 36, 15–29 (2010). doi:10.1134/S1063780X10010022

    Article  ADS  Google Scholar 

  68. Efremov, V.P., Pikuz Jr., S.A., Faenov, A.Y., et al.: Study of the energy release region of a heavy-ion flux in nanomaterials by X-ray spectroscopy of multicharged ions. JETP Lett. 81(8), 378 (2005)

    Article  ADS  Google Scholar 

  69. Egorov, I.: Zvezdy na Zemle: Termoyad (Stars on the Earth: thermonuclear fusion). Populyarnaya Mekhanika (5), 86 (2012)

    Google Scholar 

  70. Eloy, M., Azambuja, R., Mendonca, J.T., Bingham, R.: Interaction of ultrashort high-intensity laser pulses with atomic clusters. Phys. Plasmas 8(3), 1084–1086 (2001)

    Article  ADS  Google Scholar 

  71. Esarey, E., Sprangle, P., Krall, J., Ting, A.: Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996)

    Article  ADS  Google Scholar 

  72. Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

    Article  ADS  Google Scholar 

  73. Esirkepov, T.Z., Bulanov, S.V., Nishihara, K., et al.: Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89(17), 175003 (2002)

    Article  ADS  Google Scholar 

  74. Esirkepov, T., Borghesi, M., Bulanov, S.V., et al.: Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92(17), 175003 (2004)

    Article  ADS  Google Scholar 

  75. Esirkepov, T., Yamagiwa, M., Tajima, T.: Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96(10), 105001 (2006)

    Article  ADS  Google Scholar 

  76. Faure, J., Glinec, Y., Pukhov, A., et al.: A laserplasma accelerator producing monoenergetic electron beams. Nature 431(7008), 541–544 (2004)

    Article  ADS  Google Scholar 

  77. Fäustlin, R.R., Bornath, T., Döppner, T., et al.: Observation of ultrafast nonequilibrium collective dynamics in warm dense hydrogen. Phys. Rev. Lett. 104, 125002 (2010)

    Article  ADS  Google Scholar 

  78. Flacco, A., Ceccotti, T., George, H., et al.: Comparative study of laser ion acceleration with different contrast enhancement techniques. Nucl. Instrum. Methods Phys. Res. A 620(1), 18–22 (2010)

    Article  ADS  Google Scholar 

  79. Fortov, V.E. (ed.): Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma). Nauka, Moscow (2000)

    Google Scholar 

  80. Fortov, V.E.: Intense Shock Waves and Extreme States of Matter. Bukos, Moscow (2005)

    Google Scholar 

  81. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., et al.: Complex (dusty) plasma: current status, open issues, perspectives. Phys. Rep. 421(1), 1–103 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  82. Fortov, V.E., Hoffmann, D.H.H., Sharkov, B.Y.: Intense ion beams for generating extreme states of matter. Phys. Usp. 51(2), 109 (2008)

    Article  ADS  Google Scholar 

  83. Fourkal, E., Shahine, B., Ding, M., et al.: Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29(12), 2788–2798 (2002)

    Article  Google Scholar 

  84. Fourkal, E., Li, J.S., Xiong, W., et al.: Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study. Phys. Med. Biol. 48(24), 3977–4000 (2003)

    Article  Google Scholar 

  85. Frenje, J.A., Casey, D.T., Li, C.K., et al.: Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometer. Phys. Plasmas 17(5), 056311 (2010)

    Article  ADS  Google Scholar 

  86. Frolov, A.A.: Excitation of surface waves at a plasma boundary by a short laser pulse. Plasma Phys. Rep. 33(3), 179–188 (2007)

    Article  ADS  Google Scholar 

  87. Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R., Tsakiris, G.D., Schramm, U., Rowlands-Rees, T.P., Hooker, S.M., Habs, D., Krausz, F., Karsch, S., Grüner, F.: Laser-driven soft-X-ray undulator source. Nat. Phys. 5(09), 826–829 (2009)

    Article  Google Scholar 

  88. Fukuda, Y., Faenov, A.Y., Pikuz, T., et al.: Soft X-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters. Appl. Phys. Lett. 92(12), 121110 (2008)

    Article  ADS  Google Scholar 

  89. Fukuda, Y., Faenov, A.Y., Tampo, M., et al.: Energy increase in multi-MeV ion acceleration in the interaction of a short pulse laser with a cluster-gas target. Phys. Rev. Lett. 103, 165002 (2009)

    Article  ADS  Google Scholar 

  90. Gaillard, S.A., et al.: Abstract no. g06.003. In: Proceedings of the APS 51st Annual Meeting of the Division of Plasma Physics. APS, New York (2009)

    Google Scholar 

  91. Gaillard, S.A., Flippo, K.A., Lowenstern, M.E., et al.: Proton acceleration from ultrahigh-intensity short-pulse laser-matter interactions with cu micro-cone targets at an intrinsic \(\sim 10^{8}\) contrast. J. Phys.: Conf. Ser. 244(2), 022034 (2010)

    Google Scholar 

  92. Gavrilenko, V.P., Faenov, A.Y., Magunov, A.I., et al.: Observation of modulations in Lyman-α line profiles of multicharged ions in clusters irradiated by femtosecond laser pulses: effect of a dynamic electric field. Phys. Rev. A 73, 013203 (2006)

    Article  ADS  Google Scholar 

  93. Geddes, C.G.R., Tóth, C., van Tilborg, J., et al.: High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008), 538–541 (2004)

    Article  ADS  Google Scholar 

  94. Giannessi, L., Bacci, A., Bellaveglia, M., et al.: Self-amplified spontaneous emission free-electron laser with an energy-chirped electron beam and undulator tapering. Phys. Rev. Lett. 106, 144801 (2011)

    Article  ADS  Google Scholar 

  95. Gizzi, L., Betti, S., Frster, E., et al.: Laser-accelerated ions from layered targets. Nucl. Instrum. Methods Phys. Res. A 620(1), 83–87 (2010)

    Article  ADS  Google Scholar 

  96. Glebov, V.Y., Forrest, C., Knauer, J.P., et al.: Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA. Rev. Sci. Instrum. 83(10), 10D309 (2012)

    Google Scholar 

  97. Glenzer, S.H.: Update on the national ignition campaign (2012)

    Google Scholar 

  98. Glenzer, S.H., MacGowan, B.J., Michel, P., et al.: Symmetric inertial confinement fusion implosions at ultra-high laser energies. Science 327(5970), 1228–1231 (2010)

    Article  ADS  Google Scholar 

  99. Glenzer, S.H., MacGowan, B.J., Meezan, N.B., et al.: Publisher’s note: demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums [Phys. Rev. Lett. 106, 085004 (2011)]. Phys. Rev. Lett. 106, 109903 (2011)

    Google Scholar 

  100. Glenzer, S.H., MacGowan, B.J., Meezan, N.B., et al.: Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. Phys. Rev. Lett. 106, 085004 (2011)

    Article  ADS  Google Scholar 

  101. Glenzer, S.H., Callahan, D.A., MacKinnon, A.J., et al.: Cryogenic thermonuclear fuel implosions on the national ignition facility. Phys. Plasmas 19(5), 056318 (2012)

    Article  ADS  Google Scholar 

  102. Glenzer, S.H., Spears, B.K., Edwards, M.J., et al.: First implosion experiments with cryogenic thermonuclear fuel on the national ignition facility. Plasma Phys. Control. Fusion 54(4), 045013 (2012)

    Article  ADS  Google Scholar 

  103. Golubev, S.V., Suvorov, E.V., Shalashov, A.G.: On the possibility of terahertz wave generation upon dense gas optical breakdown. JETP Lett. 79(8), 361–364 (2004)

    Article  ADS  Google Scholar 

  104. Goncharov, V.N., Sangster, T.C., Boehly, T.R., et al.: Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. Phys. Rev. Lett. 104, 165001 (2010)

    Article  ADS  Google Scholar 

  105. Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagnetic waves by a short laser pulse in stratified rarefied plasma. J. Exp. Theor. Phys. 83(5), 967–973 (1996)

    ADS  Google Scholar 

  106. Gorbunov, L.M., Frolov, A.A.: Emission of low-frequency electromagnetic waves by a short laser pulse propagating in a plasma with density fluctuations. Plasma Phys. Rep. 26(8), 646–656 (2000)

    Article  ADS  Google Scholar 

  107. Gorbunov, L.M., Frolov, A.A.: Electromagnetic radiation at twice the plasma frequency emitted from the region of interaction of two short laser pulses in a rarefied plasma. J. Exp. Theor. Phys. 98(3), 527–537 (2004)

    Article  ADS  Google Scholar 

  108. Gorbunov, L.M., Frolov, A.A.: Low-frequency transition radiation from a short laser pulse at the plasma boundary. J. Exp. Theor. Phys. 102(6), 894–901 (2006)

    Article  ADS  Google Scholar 

  109. Gorbunov, L.M., Frolov, A.A.: On the theory of Cherenkov emission from a short laser pulse in a magnetized plasma. Plasma Phys. Rep. 32(6), 500–513 (2006)

    Article  ADS  Google Scholar 

  110. Gorbunov, L.M., Frolov, A.A.: Transition radiation generated by a short laser pulse at a plasma–vacuum interface. Plasma Phys. Rep. 32(10), 850–865 (2006)

    Article  ADS  Google Scholar 

  111. Gorbunov, L.M., Kirsanov, V.I.: The excitation of plasma waves by an electromagnetic wave packet. J. Exp. Theor. Phys. 93, 509 (1987) (in Russian)

    Google Scholar 

  112. Gorbunov, L., Kirsanov, V., et al.: In: Trudy FIAN, vol. 219, p. 3. Nauka, Moscow (1992)

    Google Scholar 

  113. Gorbunov, L.M., Kalmykov, S.Y., Mora, P.: Laser wakefield acceleration by petawatt ultrashort laser pulses. Phys. Plasmas 12(3), 033101 (2005)

    Article  ADS  Google Scholar 

  114. Gordienko, S., Pukhov, A.: Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12(4), 043109 (2005)

    Article  ADS  Google Scholar 

  115. Haan, S.W., Lindl, J.D., Callahan, D.A., et al.: Point design targets, specifications, and requirements for the 2010 ignition campaign on the national ignition facility. Phys. Plasmas 18(5), 051001 (2011)

    Article  ADS  Google Scholar 

  116. Hafz, N.A.M., Jeong, T.M., Choi, I.W., et al.: Stable generation of GeV-class electron beams from self-guided laser-plasma channels. Nat. Photonics 2, 571–577 (2008)

    Article  Google Scholar 

  117. Hammel, B.A., Scott, H.A., Regan, S.P., et al.: Diagnosing and controlling mix in National Ignition Facility implosion experiments. Phys. Plasmas 18(5), 056310 (2011)

    Article  ADS  Google Scholar 

  118. Hamster, H., Sullivan, A., Gordon, S., et al.: Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71(17), 2725–2728 (1993)

    Article  ADS  Google Scholar 

  119. Hatchett, S.P., Brown, C.G., Cowan, T.E., et al.: Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7(5), 2076–2082 (2000)

    Article  ADS  Google Scholar 

  120. Hau-Riege, S.P., London, R.A., Bionta, R.M., et al.: Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation. Appl. Phys. Lett. 95(11), 111104 (2009)

    Article  ADS  Google Scholar 

  121. Hayashi, Y., Pirozhkov, A.S., Kando, M., et al.: Efficient generation of Xe K-shell X-rays by high-contrast interaction with submicrometer clusters. Opt. Lett. 36(9), 1614–1616 (2011)

    Article  ADS  Google Scholar 

  122. Hegelich, B.M., Albright, B.J., Cobble, J., et al.: Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441–444 (2006)

    Article  ADS  Google Scholar 

  123. Henig, A., Kiefer, D., Markey, K., et al.: Enhanced laser-driven ion acceleration in the relativistic transparency regime. Phys. Rev. Lett. 103, 045002 (2009)

    Article  ADS  Google Scholar 

  124. Henig, A., Steinke, S., Schnürer, M., et al.: Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003 (2009)

    Article  ADS  Google Scholar 

  125. Hicks, D.G., Spears, B.K., Braun, D.G., et al.: Convergent ablator performance measurements. Phys. Plasmas 17(10), 102703 (2010)

    Article  ADS  Google Scholar 

  126. Hoener, M., Fang, L., Kornilov, O., et al.: Ultraintense X-ray induced ionization, dissociation, and frustrated absorption in molecular nitrogen. Phys. Rev. Lett. 104, 253002 (2010)

    Article  ADS  Google Scholar 

  127. Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., et al.: Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9(9), 3651–3654 (2002)

    Article  ADS  Google Scholar 

  128. Hoffmann, D., Tahir, N., Udrea, S., et al.: High energy density physics with heavy ion beams and related interaction phenomena. Contrib. Plasma Phys. 50(1), 7–15 (2010)

    Article  ADS  Google Scholar 

  129. Hogan, W.J. (ed.): Energy from Inertial Fusion. IAEA, Vienna (1995)

    Google Scholar 

  130. Honrubia, J.J., Fernández, J.C., Temporal, M., et al.: Fast ignition of inertial fusion targets by laser-driven carbon beams. Phys. Plasmas 16(10), 102701 (2009)

    Article  ADS  Google Scholar 

  131. Hooker, S.M., Spence, D.J., Smith, R.A.: Guiding of high-intensity picosecond laser pulses in a discharge-ablated capillary waveguide. J. Opt. Soc. Am. B 17(1), 90–98 (2000)

    Article  ADS  Google Scholar 

  132. Hosokai, T., Zhidkov, A., Yamazaki, A., et al.: Electron energy boosting in laser-wake-field acceleration with external magnetic field \(B \sim 1\) T and laser prepulses. Appl. Phys. Lett. 96(12), 121501 (2010)

    Article  ADS  Google Scholar 

  133. Huang, L.G., Lei, A.L., Bin, J.H., et al.: Improving proton acceleration with circularly polarized intense laser pulse by radial confinement with heavy ions. Phys. Plasmas 17(1), 013106 (2010)

    Article  ADS  Google Scholar 

  134. Huntington, C.M., Thomas, A.G.R., McGuffey, C., et al.: Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 105001 (2011)

    Article  ADS  Google Scholar 

  135. Inogamov, N.A., Anisimov, S.I., Zhakhovsky, V.V., et al.: Ablation by short optical and X-ray laser pulses. In: Proc. SPIE 7996, Fundamentals of Laser-Assisted Micro- and Nanotechnologies 2010, p. 79960T (2010)

    Google Scholar 

  136. Inogamov, N.A., Faenov, A.Y., Zhakhovsky, V.V., et al.: Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse. Contrib. Plasma Phys. 51(5), 419–426 (2011)

    Article  ADS  Google Scholar 

  137. Jiang, Y.H., Rudenko, A., Pérez-Torres, J.F., et al.: Investigating two-photon double ionization of D2 by XUV-pump˘XUV-probe experiments. Phys. Rev. A 81, 051402 (2010)

    Article  ADS  Google Scholar 

  138. Johnson, M.G., Frenje, J.A., Casey, D.T., et al.: Neutron spectrometry—an essential tool for diagnosing implosions at the national ignition facility (invited). Rev. Sci. Instrum. 83(10), 10D308 (2012)

    Google Scholar 

  139. Joshi, C.: Plasma accelerators. Sci. Am. 294(2), 40–47 (2006)

    Article  Google Scholar 

  140. Kando, M., Pirozhkov, A.S., Kawase, K., et al.: Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 103, 235003 (2009)

    Article  ADS  Google Scholar 

  141. Kaplan, A.E., Dubetsky, B.Y., Shkolnikov, P.L.: Shock shells in Coulomb explosions of nanoclusters. Phys. Rev. Lett. 91(14), 143401 (2003)

    Article  ADS  Google Scholar 

  142. Khazanov, E.A., Sergeev, A.M.: Petawatt laser based on optical parametric amplifiers: their state and prospects. Phys. Usp. 51(9), 969 (2008)

    Article  ADS  Google Scholar 

  143. Khorsand, A.R., Sobierajski, R., Louis, E., et al.: Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. Opt. Express 18(2), 700–712 (2010)

    Article  ADS  Google Scholar 

  144. Kim, K.Y., Milchberg, H.M., Faenov, A.Y., et al.: X-ray spectroscopy of 1cm plasma channels produced by self-guided pulse propagation in elongated cluster jets. Phys. Rev. E 73, 066403 (2006)

    Article  ADS  Google Scholar 

  145. Kirzhnits, D.A.: Extremal states of matter (ultrahigh pressures and temperatures). Sov. Phys. – Usp. 14(4), 512–523 (1972)

    Google Scholar 

  146. Kishimoto, Y., Masaki, T., Tajima, T.: High energy ions and nuclear fusion in laser-cluster interaction. Phys. Plasmas 9(2), 589–601 (2002)

    Article  ADS  Google Scholar 

  147. Kline, J.L., Glenzer, S.H., Olson, R.E., et al.: Observation of high soft X-ray drive in large-scale hohlraums at the National Ignition Facility. Phys. Rev. Lett. 106, 085003 (2011)

    Article  ADS  Google Scholar 

  148. Kneip, S., McGuffey, C., Martins, J.L., et al.: Bright spatially coherent synchrotron X-rays from a table-top source. Nat. Phys. 6(10), 980–983 (2010)

    Article  Google Scholar 

  149. Kodama, R., Norreys, P.A., Mima, K., et al.: Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412(6849), 798–802 (2001)

    Article  ADS  Google Scholar 

  150. Konyukhov, A.V., Likhachev, A.P., Oparin, A.M., et al.: Numerical modeling of shock-wave instability in thermodynamically nonideal media. J. Exp. Theor. Phys. 98(4), 811–819 (2004)

    Article  ADS  Google Scholar 

  151. Krall, J., Ting, A., Esarey, E., Sprangle, P.: Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48(3), 2157–2161 (1993)

    Article  ADS  Google Scholar 

  152. Krikunova, M., Maltezopoulos, T., Azima, A., et al.: Time-resolved ion spectrometry on xenon with the jitter-compensated soft X-ray pulses of a free-electron laser. New J. Phys. 11(12), 123019 (2009)

    Article  ADS  Google Scholar 

  153. Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Reading, MA (1988)

    Google Scholar 

  154. Kugland, N.L., Neumayer, P., Döppner, T., et al.: High contrast Kr gas jet K alpha X-ray source for high energy density physics experiments. Rev. Sci. Instrum. 79(10), 10E917 (2008)

    Google Scholar 

  155. Kyrala, G.A., Seifter, A., Kline, J.L., et al.: Tuning indirect-drive implosions using cone power balance. Phys. Plasmas 18(7), 072703 (2011)

    Article  ADS  Google Scholar 

  156. Landen, O.L., Edwards, J., Haan, S.W., et al.: Capsule implosion optimization during the indirect-drive National Ignition Campaign. Phys. Plasmas 18(5), 051002 (2011)

    Article  ADS  Google Scholar 

  157. Last, I., Schek, I., Jortner, J.: Energetics and dynamics of Coulomb explosion of highly charged clusters. J. Chem. Phys. 107(17), 6685–6692 (1997)

    Article  ADS  Google Scholar 

  158. Lee, K., Lee, J.Y., Park, S.H., et al.: Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Plasmas 18(1), 013101 (2011)

    Article  ADS  Google Scholar 

  159. Leemans, W.P., Geddes, C.G.R., Faure, J., et al.: Observation of terahertz emission from a laser-plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91(7), 074802 (2003)

    Article  ADS  Google Scholar 

  160. Leemans, W.P., van Tilborg, J., Faure, J., et al.: Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11(5), 2899–2906 (2004)

    Article  ADS  Google Scholar 

  161. Leemans, W.P., Nagler, B., Gonsalves, A.J., et al.: GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2(10), 696–699 (2006)

    Article  Google Scholar 

  162. Li, C.K., Sguin, F.H., Frenje, J.A., et al.: Charged-particle probing of X-ray driven inertial-fusion implosions. Science 327(5970), 1231–1235 (2010)

    Article  ADS  Google Scholar 

  163. Lifschitz, A.F., Faure, J., Malka, V., Mora, P.: GeV wakefield acceleration of low energy electron bunches using petawatt lasers. Phys. Plasmas 12(9), 093104 (2005)

    Article  ADS  Google Scholar 

  164. Lindl, J.D.: Inertial Confinement Fusion. Springer, New York (1998)

    Google Scholar 

  165. Lindli, J.D.: Nif ignition target design, requirements, margins, and uncertainties. In: Proceedings of 6th International Conference IFSA, San Francisco (2009)

    Google Scholar 

  166. Lu, H.Y., Liu, J.S., Wang, C., et al.: Efficient fusion neutron generation from heteronuclear clusters in intense femtosecond laser fields. Phys. Rev. A 80, 051201 (2009)

    Article  ADS  Google Scholar 

  167. Lykov, V.A., Baidin, G.V.: Computer simulation of laser proton acceleration for hadron therapy. J. Phys.: Conf. Ser. 244(2), 022046 (2010)

    Google Scholar 

  168. Mackinnon, A.J., Kline, J.L., Dixit, S.N., et al.: Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. Phys. Rev. Lett. 108, 215005 (2012)

    Article  ADS  Google Scholar 

  169. Maksimchuk, A., Gu, S., Flippo, K., et al.: Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84(18), 4108–4111 (2000)

    Article  ADS  Google Scholar 

  170. Maksimchuk, A., Flippo, K., Krause, H., et al.: Plasma phase transition in dense hydrogen and electron–hole plasmas. Plasma Phys. Rep. 30(6), 473–495 (2004)

    Article  ADS  Google Scholar 

  171. Malka, V., Faure, J., Gauduel, Y.A., et al.: Principles and applications of compact laserplasma accelerators. Nat. Phys. 4(06), 447–453 (2008)

    Article  Google Scholar 

  172. Mancic, A., Robiche, J., Antici, P., et al.: Isochoric heating of solids by laser-accelerated protons: experimental characterization and self-consistent hydrodynamic modeling. High Energy Density Phys. 6(1), 21–28 (2010)

    Article  ADS  Google Scholar 

  173. Mancuso, A.P., Gorniak, T., Staier, F., et al.: Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH. New J. Phys. 12(3), 035003 (2010)

    Article  ADS  Google Scholar 

  174. Martins, M., Wellhöfer, M., Sorokin, A.A., et al.: Resonant multiphoton processes in the soft-X-ray regime. Phys. Rev. A 80, 023411 (2009)

    Article  ADS  Google Scholar 

  175. McGuffey, C., Thomas, A.G.R., Schumaker, W., et al.: Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010)

    Article  ADS  Google Scholar 

  176. Mesyats, G.A.: Impul’snaya energetika i elektronika (Pulse Power and Electronics). Nauka, Moscow (2004)

    Google Scholar 

  177. Mesyats, G.A., Yalandin, M.I.: High-power picosecond electronics. Phys. Usp. 48(3), 211 (2005)

    Article  ADS  Google Scholar 

  178. Michel, P., Divol, L., Williams, E.A., et al.: Tuning the implosion symmetry of ICF targets via controlled crossed-beam energy transfer. Phys. Rev. Lett. 102, 025004 (2009)

    Article  ADS  Google Scholar 

  179. Michel, D.T., Depierreux, S., Stenz, C., et al.: Exploring the saturation levels of stimulated raman scattering in the absolute regime. Phys. Rev. Lett. 104, 255001 (2010)

    Article  ADS  Google Scholar 

  180. Mima, K.: Present status and prospects of firex project for fast ignition laser fusion (2008)

    Google Scholar 

  181. Mima, K., Fast Ignition Research Group: Present status and future prospects of laser fusion and related high energy density plasma research. AIP Conf. Proc. 740(1), 387–397 (2004)

    Article  ADS  Google Scholar 

  182. Mintsev, V., Gryaznov, V., Kulish, M., et al.: Stopping power of proton beam in a weakly non-ideal xenon plasma. Contrib. Plasma Phys. 39(1–2), 45–48 (1999)

    Article  ADS  Google Scholar 

  183. Moody, J.D., Michel, P., Divol, L., et al.: Multistep redirection by cross-beam power transfer of ultrahigh-power lasers in a plasma. Nat. Phys. 8(4), 344–349 (2012)

    Article  Google Scholar 

  184. Mori, W.B., Decker, C.D., Hinkel, D.E., Katsouleas, T.: Raman forward scattering of short-pulse high-intensity lasers. Phys. Rev. Lett. 72(10), 1482–1485 (1994)

    Article  ADS  Google Scholar 

  185. Moses, E.I.: The National Ignition Facility and the National Ignition Campaign. IEEE Trans. Plasma Sci. 38(4, Part 2, SI), 684–689 (2010). 36th IEEE International Conference on Plasma Science, San Diego, CA, May 31–Jun 05, 2009

    Google Scholar 

  186. Mourou, G.A., Tajima, T., Bulanov, S.V.: Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 1804–1816 (2006)

    Article  Google Scholar 

  187. Nakamura, T., Fukuda, Y., Yogo, A., et al.: High energy negative ion generation by Coulomb implosion mechanism. Phys. Plasmas 16(11), 113106 (2009)

    Article  ADS  Google Scholar 

  188. Nakatsutsumi, M., Marques, J.R., Antici, P., et al.: High-power laser delocalization in plasmas leading to long-range beam merging. Nat. Phys. 6(10), 1010–1016 (2010)

    Article  Google Scholar 

  189. National Research Council: Frontiers in High Energy Density Physics. National Academies Press, Washington, DC (2003)

    Google Scholar 

  190. Naumova, N., Schlegel, T., Tikhonchuk, V.T., et al.: Hole boring in a DT pellet and fast-ion ignition with ultraintense laser pulses. Phys. Rev. Lett. 102, 025002 (2009)

    Article  ADS  Google Scholar 

  191. Nishihara, K., Amitani, H., Murakami, M., et al.: High energy ions generated by laser driven Coulomb explosion of cluster. Nucl. Instrum. Methods Phys. Res. A 464(1–3), 98–102 (2001)

    Article  ADS  Google Scholar 

  192. Norreys, P.A.: Laser-driven particle acceleration. Nat. Photonics 3(8), 423–425 (2009)

    Article  ADS  Google Scholar 

  193. Ogura, K., Shizuma, T., Hayakawa, T., et al.: Proton-induced nuclear reactions using compact high-contrast high-intensity laser. Appl. Phys. Express 2(6), 066001 (2009)

    Article  ADS  Google Scholar 

  194. Okihara, S., Esirkepov, T.Z., Nagai, K., et al.: Ion generation in a low-density plastic foam by interaction with intense femtosecond laser pulses. Phys. Rev. E 69(2), 026401 (2004)

    Article  ADS  Google Scholar 

  195. Pollock, B.B., Clayton, C.E., Ralph, J.E., et al.: Demonstration of a narrow energy spread, \(\sim 0.5\) gev electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001 (2011)

    Google Scholar 

  196. Pukhov, A.: Strong field interaction of laser radiation. Rep. Prog. Phys. 66(1), 47–101 (2003)

    Article  ADS  Google Scholar 

  197. Pukhov, A., Meyer-ter-Vehn, J.: Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74(4–5), 355–361 (2002)

    Article  ADS  Google Scholar 

  198. Regan, S.P., Epstein, R., Hammel, B.A., et al.: Hot-spot mix in ignition-scale implosions on the NIF. Phys. Plasmas 19(5), 056307 (2012)

    Article  ADS  Google Scholar 

  199. Regan, S.P., Falk, K., Gregori, G., et al.: Inelastic X-ray scattering from shocked liquid deuterium. Phys. Rev. Lett. 109, 265003 (2012)

    Article  ADS  Google Scholar 

  200. Robbie, S.O., Doyle, H., Symes, D., Smith, R.: A study of ambient upstream material properties using perpendicular laser driven radiative blast waves in atomic cluster gases. High Energy Density Phys. 8(1), 55–59 (2012)

    Article  ADS  Google Scholar 

  201. Robey, H.F., Celliers, P.M., Kline, J.L., et al.: Precision shock tuning on the national ignition facility. Phys. Rev. Lett. 108, 215004 (2012)

    Article  ADS  Google Scholar 

  202. Rosmej, O.N., Blazevic, A., Korostiy, S., et al.: Charge state and stopping dynamics of fast heavy ions in dense matter. Phys. Rev. A 72(5), 052901 (2005)

    Article  ADS  Google Scholar 

  203. Roth, M., Cowan, T.E., Key, M.H., et al.: Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86(3), 436–439 (2001)

    Article  ADS  Google Scholar 

  204. Roth, M., Alber, I., Bagnoud, V., et al.: Proton acceleration experiments and warm dense matter research using high power lasers. Plasma Phys. Control. Fusion 51(12), 124039 (2009)

    Article  ADS  Google Scholar 

  205. Schatz, T., Schramm, U., Habs, D.: Crystalline ion beams. Nature 412(6848), 717–720 (2001)

    Article  ADS  Google Scholar 

  206. Schlenvoigt, H.P., Haupt, K., Debus, A., et al.: A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4(2), 130–133 (2008)

    Article  Google Scholar 

  207. Schneider, J.R.: FLASH from accelerator test facility to the first single-pass soft X-ray free-electron laser. J. Phys. B: At. Mol. Opt. Phys. 43(19), 194001 (2010)

    Article  ADS  Google Scholar 

  208. Schramm, U., Schatz, T., Bussmann, M., Habs, D.: Cooling and heating of crystalline ion beams. J. Phys. B 36(3), 561–571 (2003)

    Article  ADS  Google Scholar 

  209. Schroeder, C.B., Esarey, E., van Tilborg, J., Leemans, W.P.: Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69(1), 016501 (2004)

    Article  ADS  Google Scholar 

  210. Seibert, M.M., Ekeberg, T., Maia, F.R.N.C., et al.: Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 470(2), 78–81 (2011)

    Article  ADS  Google Scholar 

  211. Seres, J., Seres, E., Verhoef, A.J., et al.: Laser technology: source of coherent kiloelectronvolt X-rays. Nature 433(02), 596 (2005)

    Article  ADS  Google Scholar 

  212. Shao, Y.L., Ditmire, T., Tisch, J.W.G., et al.: Multi-keV electron generation in the interaction of intense laser pulses with Xe clusters. Phys. Rev. Lett. 77(16), 3343–3346 (1996)

    Article  ADS  Google Scholar 

  213. Sharkov, B.Y. (ed.): Yadernyi sintez s inertsionnym uderzhaniem (Inertial Confinement Nuclear Fusion). Fizmatlit, Moscow (2005)

    Google Scholar 

  214. Sheng, Z.M., Wu, H.C., Li, K., Zhang, J.: Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses. Phys. Rev. E 69(2), 025401 (2004)

    Article  ADS  Google Scholar 

  215. Sheng, Z.M., Mima, K., Zhang, J.: Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12(12), 123103 (2005)

    Article  ADS  Google Scholar 

  216. Sheng, Z.M., Mima, K., Zhang, J., Sanuki, H.: Emission of electromagnetic pulses from laser wakefields through linear mode conversion. Phys. Rev. Lett. 94(9), 095003 (2005)

    Article  ADS  Google Scholar 

  217. Sherrill, M.E., Abdallah, J., Csanak, G., et al.: Spectroscopic characterization of an ultrashort-pulse-laser-driven ar cluster target incorporating both Boltzmann and particle-in-cell models. Phys. Rev. E 73, 066404 (2006)

    Article  ADS  Google Scholar 

  218. Shvets, G., Wurtele, J.S., Chiou, T.C., Katsouleas, T.C.: Excitation of accelerating wakefields in inhomogeneous plasmas. IEEE Trans. Plasma Sci. 24(2), 351–362 (1996)

    Article  ADS  Google Scholar 

  219. Spears, B.K., Glenzer, S., Edwards, M.J., et al.: Performance metrics for inertial confinement fusion implosions: aspects of the technical framework for measuring progress in the national ignition campaign. Phys. Plasmas 19(5), 056316 (2012)

    Article  ADS  Google Scholar 

  220. Spence, N., Katsouleas, T., Muggli, P., et al.: Simulations of Cerenkov wake radiation sources. Phys. Plasmas 8(11), 4995–5005 (2001)

    Article  ADS  Google Scholar 

  221. Spence, D.J., Butler, A., Hooker, S.M.: Gas-filled capillary discharge waveguides. J. Opt. Soc. Am. B 20(1), 138–151 (2003)

    Article  ADS  Google Scholar 

  222. Spielman, R.B., Deeney, C., Chandler, G.A., et al.: Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ. Phys. Plasmas 5(5), 2105–2111 (1998)

    Article  ADS  Google Scholar 

  223. Sprangle, P., Esarey, E., Ting, A., Joyce, G.: Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53(22), 2146–2148 (1988)

    Article  ADS  Google Scholar 

  224. Sprangle, P., Esarey, E., Krall, J., Joyce, G.: Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69(15), 2200–2203 (1992)

    Article  ADS  Google Scholar 

  225. Sprangle, P., Penano, J.R., Hafizi, B., Kapetanakos, C.A.: Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69(6), 066415 (2004)

    Article  ADS  Google Scholar 

  226. Steinke, S., Henig, A., Schnurer, M., et al.: Efficient ion acceleration by collective laser-driven electron dynamics with ultra-thin foil targets. Laser Part. Beams 28(01), 215–221 (2010)

    Article  ADS  Google Scholar 

  227. Stephens, R.B., Akli, K.U., Bartal, T., et al.: Energy injection for fast ignition. Plasma Fusion Res.: Rev. Articles 4, 016 (2009)

    Article  ADS  Google Scholar 

  228. Tabak, M., Hammer, J., Glinsky, M.E., et al.: Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1(5), 1626–1634 (1994)

    Article  ADS  Google Scholar 

  229. Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Proposal for the study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95(3), 035001 (2005)

    Article  ADS  Google Scholar 

  230. Tahir, N.A., Deutsch, C., Fortov, V.E., et al.: Studies of strongly coupled plasmas using intense heavy ion beams at the future FAIR facility: the HEDgeHOB collaboration. Contrib. Plasma Phys. 45(3–4), 229–235 (2005)

    Article  ADS  Google Scholar 

  231. Tahir, N.A., Kain, V., Schmidt, R., et al.: The CERN Large Hadron Collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94(13), 135004 (2005)

    Article  ADS  Google Scholar 

  232. Tajima, T.: Summary of Working Group 7 on “Exotic acceleration schemes”. AIP Conf. Proc. 569(1), 77–81 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  233. Tajima, T., Dawson, J.M.: Laser electron accelerator. Phys. Rev. Lett. 43(4), 267–270 (1979)

    Article  ADS  Google Scholar 

  234. Thomas, A.G.R., Krushelnick, K.: Betatron X-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Phys. Plasmas 16(10), 103103 (2009)

    Article  ADS  Google Scholar 

  235. Togashi, T., Takahashi, E.J., Midorikawa, K., et al.: Extreme ultraviolet free electron laser seeded with high-order harmonic of ti:sapphire laser. Opt. Express 19(1), 317–324 (2011)

    Article  ADS  Google Scholar 

  236. Toleikis, S., Fustlin, R., Cao, L., et al.: Soft X-ray scattering using FEL radiation for probing near-solid density plasmas at few electron volt temperatures. High Energy Density Phys. 6(1), 15–20 (2010)

    Article  ADS  Google Scholar 

  237. Town, R.P.J., Rosen, M.D., Michel, P.A., et al.: Analysis of the National Ignition Facility ignition hohlraum energetics experiments. Phys. Plasmas 18(5), 056302 (2011)

    Article  ADS  Google Scholar 

  238. Treusch, R., Feldhaus, J.: FLASH: new opportunities for (time-resolved) coherent imaging of nanostructures. New J. Phys. 12(3), 035015 (2010)

    Article  ADS  Google Scholar 

  239. Tzortzakis, S., Mechain, G., Patalano, G., et al.: Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett. 27(21), 1944–1946 (2002)

    Article  ADS  Google Scholar 

  240. van Tilborg, J., Schroeder, C.B., Esarey, E., Leemans, W.P.: Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams. Laser Part. Beams 22, 415–422 (2004)

    ADS  Google Scholar 

  241. van Tilborg, J., Schroeder, C.B., Filip, C.V., et al.: Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96(1), 014801 (2006)

    Article  ADS  Google Scholar 

  242. Wang, S., Clayton, C.E., Blue, B.E., et al.: X-ray emission from betatron motion in a plasma wiggler. Phys. Rev. Lett. 88(13), 135004 (2002)

    Article  ADS  Google Scholar 

  243. Wilks, S.C., Langdon, A.B., Cowan, T.E., et al.: Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8(2), 542–549 (2001)

    Article  ADS  Google Scholar 

  244. Willingale, L., Petrov, G.M., Maksimchuk, A., et al.: Front versus rear side light-ion acceleration from high-intensity laser–solid interactions. Plasma Phys. Control. Fusion 53(1), 014011 (2011)

    Article  ADS  Google Scholar 

  245. Yampolsky, N.A., Fraiman, G.M.: Conversion of laser radiation to terahertz frequency waves in plasma. Phys. Plasmas 13(11), 113108 (2006)

    Article  ADS  Google Scholar 

  246. Yan, X.Q., Wu, H.C., Sheng, Z.M., et al.: Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at \(7 \times 10^{21} \mathbf{W}/\mathrm{cm}^{2}\). Phys. Rev. Lett. 103, 135001 (2009)

    Article  ADS  Google Scholar 

  247. Yoshii, J., Lai, C.H., Katsouleas, T., et al.: Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79(21), 4194–4197 (1997)

    Article  ADS  Google Scholar 

  248. Young, L., Kanter, E.P., Krassig, B., et al.: Femtosecond electronic response of atoms to ultra-intense X-rays. Nature 466(07), 56–61 (2010)

    Article  ADS  Google Scholar 

  249. Yugami, N., Higashiguchi, T., Gao, H., et al.: Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89(6), 065003 (2002)

    Article  ADS  Google Scholar 

  250. Zhang, Z.M., He, X.T., Sheng, Z.M., Yu, M.Y.: High-density highly collimated monoenergetic GeV ions from interaction of ultraintense short laser pulse with foil in plasma. Phys. Plasmas 17(4), 043110 (2010)

    Article  ADS  Google Scholar 

  251. Zhang, L., Chen, L.M., Yuan, D.W., et al.: Enhanced Kα output of Ar and Kr using size optimized cluster target irradiated by high-contrast laser pulses. Opt. Express 19(25), 25812–25822 (2011)

    Article  ADS  Google Scholar 

  252. Zhang, L., Chen, L.M., Wang, W.M., et al.: Electron acceleration via high contrast laser interacting with submicron clusters. Appl. Phys. Lett. 100(1), 014104 (2012)

    Article  ADS  Google Scholar 

  253. Zhidkov, A., Esirkepov, T., Fujii, T., et al.: Characteristics of light reflected from a dense ionization wave with a tunable velocity. Phys. Rev. Lett. 103, 215003 (2009)

    Article  ADS  Google Scholar 

  254. Zigler, A., Ehrlich, Y., Cohen, C., et al.: Optical guiding of high-intensity laser pulses in a long plasma channel formed by a slow capillary discharge. J. Opt. Soc. Am. B 13(1), 68–71 (1996)

    Article  ADS  Google Scholar 

  255. Zigler, A., Palchan, T., Bruner, N., et al.: 5.5–7.5 MeV proton generation by a moderate-intensity ultrashort-pulse laser interaction with H2O nanowire targets. Phys. Rev. Lett. 106, 134801 (2011)

    Google Scholar 

  256. Zweiback, J., Ditmire, T.: Femtosecond laser energy deposition in strongly absorbing cluster gases diagnosed by blast wave trajectory analysis. Phys. Plasmas 8(10), 4545–4550 (2001)

    Article  ADS  Google Scholar 

  257. Zweiback, J., Cowan, T.E., Smith, R.A., et al.: Characterization of fusion burn time in exploding deuterium cluster plasmas. Phys. Rev. Lett. 85(17), 3640–3643 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fortov, V.E. (2016). Technical Applications of the Physics of High Energy Densities. In: Extreme States of Matter. Springer Series in Materials Science, vol 216. Springer, Cham. https://doi.org/10.1007/978-3-319-18953-6_7

Download citation

Publish with us

Policies and ethics