AGADE Using Personal Preferences and World Knowledge to Model Agent Behaviour

  • Thomas FarrenkopfEmail author
  • Michael Guckert
  • Neil Urquhart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9086)


BDI agents provide a common well established approach for building multi-agent simulations. In this paper we demonstrate how semantic technologies can be used to model agent behaviour. Beliefs, desires and intentions are mapped flexibly to corresponding OWL ontologies structured in layers. This reduces JAVA coding efforts significantly. Reasoning mechanisms and rule evaluation are used to compute agent behaviour by deriving an agent’s actions from declaratively formulated rules. An agent’s knowledge of its environment and its personal preferences can be expressed and human behaviour can be simulated. The approach is implemented in an integrated tool for running round based agent simulations (AGADE).


Multi-agent system BDI OWL ontology Market simulation Human behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of Modern Physics 74(1), 47–97 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Baader, F.: The description logic handbook: theory, implementation, and applications. Cambridge University Press (2003)Google Scholar
  3. 3.
    Baker, M.: The Marketing Book. Taylor & Francis (2012)Google Scholar
  4. 4.
    Bellifemine, F., Caire, G., Greenwood, D.P.A.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar
  5. 5.
    Bratman, M.: Intention, plans, and practical reason. Center for the Study of Language and Information, Stanford and Calif (1999)Google Scholar
  6. 6.
    Chip: Vergleich: Handys im Test. (Accessed, 10 January, 2015)
  7. 7.
    Farrenkopf, T., Guckert, M., Hoffmann, B., Urquhart, N.: AGADE. In: Müller, J.P., Weyrich, M., Bazzan, A.L.C. (eds.) MATES 2014. LNCS, vol. 8732, pp. 234–250. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Feng, Y., et al.: Discovering anomalies in semantic web rules. Secure System Integration and Reliability Improvement 33–42 (2010)Google Scholar
  9. 9.
    Holland, J.H.: Signals And Boundaries. MIT (2012)Google Scholar
  10. 10.
    Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semantic Web 2(1), 11–21 (2011)Google Scholar
  11. 11.
    Horrocks, I., et al.: Semantic Web Rule Language (SWRL). W3C Member Submission (21 May 2004).
  12. 12.
    Lantos, G.P.: Consumer Behavior in Action: Real-Life Applications for Marketing Managers. M. E. Sharpe Incorporated (2010)Google Scholar
  13. 13.
    Newell, A., Simon, H.A., et al.: Human problem solving, vol. 104. Prentice-Hall Englewood Cliffs, NJ (1972)Google Scholar
  14. 14.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web (1999)Google Scholar
  15. 15.
    W3C OWL Working Group: OWL 2 Web Ontology Language: Document Overview. W3C Recommendation, 11 December 2012.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Farrenkopf
    • 1
    Email author
  • Michael Guckert
    • 1
  • Neil Urquhart
    • 2
  1. 1.KITE - Kompetenzzentrum für InformationstechnologieTechnische Hochschule MittelhessenGiessenGermany
  2. 2.School of ComputingEdinburgh Napier UniversityEdinburghScotland

Personalised recommendations