Skip to main content

Technical Constraints on Sensitivity

  • Chapter
  • First Online:
Quantum Microscopy of Biological Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 744 Accesses

Abstract

In the preceding chapters, several new methods to improve the particle tracking sensitivity have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Abbondanzieri, W.J. Greenleaf, J.W. Shaevitz, R. Landick, S.M. Block, Direct observation of base-pair stepping by RNA polymerase. Nature 438(7067), 460–465 (2005)

    Article  ADS  Google Scholar 

  2. C. Ai, J.C. Wyant, Testing stress birefringence of an optical window, in 8th International Symposium on Gas Flow and Chemical Lasers. International Society for Optics and Photonics (1992), pp. 165–172

    Google Scholar 

  3. K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75(3), 594–612 (2004)

    Google Scholar 

  4. R.W. Bowman, M.J. Padgett, Optical trapping and binding. Rep. Prog. Phys. 76(2), 026401 (2013)

    Article  ADS  Google Scholar 

  5. R.W. Bowman, A.J. Wright, M.J. Padgett, An SLM-based Shack-Hartmann wavefront sensor for aberration correction in optical tweezers. J. Opt. 12(12), 124004 (2010)

    Article  ADS  Google Scholar 

  6. A. Carter, G. King, T. Ulrich, W. Halsey, D. Alchenberger, T. Perkins, Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 46(3), 421–427 (2007)

    Article  ADS  Google Scholar 

  7. H. Chen, H. Yang, X. Yu, Z. Shi, Simulated and experimental study of laser-beam induced thermal aberrations in precision optical systems. Appl. Opt. 52(18), 4370–4376 (2013)

    Article  Google Scholar 

  8. T. Čižmár, M. Mazilu, K. Dholakia, In situ wavefront correction and its application to micromanipulation. Nat. Photon. 4(6), 388–394 (2010)

    Article  ADS  Google Scholar 

  9. D.B. Conkey, A.N. Brown, A.M. Caravaca-Aguirre, R. Piestun, Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20(5), 4840–4849 (2012)

    Article  ADS  Google Scholar 

  10. F. Czerwinski, A.C. Richardson, L.B. Oddershede, Quantifying noise in optical tweezers by allan variance. Opt. Express 17, 13255–13269 (2009)

    Article  ADS  Google Scholar 

  11. M. Dienerowitz, G. Gibson, R. Bowman, M. Padgett, Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample. Opt. Express 19(24), 24589–24595 (2011)

    Article  ADS  Google Scholar 

  12. E. Martín-Badosa, M. Montes-Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, I. Juvells, Design strategies for optimizing holographic optical tweezers set-ups. J. Opt. A: Pure Appl. Opt 9(8), S267–S277 (2007)

    Article  ADS  Google Scholar 

  13. I. Moshe, S. Jackel, Influence of birefringence-induced bifocusing on optical beams. J. Opt. Soc. Am. B 22(6), 1228–1235 (2005)

    Article  ADS  Google Scholar 

  14. M. Müllenbroich, N. McAlinden, A. Wright, Adaptive optics in an optical trapping system for enhanced lateral trap stiffness at depth. J. Opt. 15(7), 075305 (2013)

    Article  ADS  Google Scholar 

  15. K. Neuman, S. Block, Optical trapping. Rev. Sci. Instrum. 75(9), 2787–2809 (2004)

    Article  ADS  Google Scholar 

  16. T. Ota, T. Sugiura, S. Kawata, M.J. Booth, M.A. Neil, R. Juskaitis, T. Wilson, Enhancement of laser trapping force by spherical aberration correction using a deformable mirror. Jpn. J. Appl. Phys. 42(6B; ISSU 391), L701–L703 (2003)

    Google Scholar 

  17. S.N.S. Reihani, S.A. Mir, A.C. Richardson, L.B. Oddershede, Significant improvement of optical traps by tuning standard water immersion objectives. J. Opt. 13(10), 105301 (2011)

    Article  ADS  Google Scholar 

  18. Y. Roichman, A. Waldron, E. Gardel, D.G. Grier, Optical traps with geometric aberrations. Appl. Opt. 45(15), 3425–3429 (2006)

    Article  ADS  Google Scholar 

  19. S. Tolic-Nørrelykke, E. Schaffer, J. Howard, F. Pavone, F. Julicher, H. Flyvbjerg, Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77(10), 103101–103101 (2006)

    Google Scholar 

  20. W.H. Wright, G. Sonek, M. Berns, Parametric study of the forces on microspheres held by optical tweezers. Appl. Opt. 33(9), 1735–1748 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). Technical Constraints on Sensitivity. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_9

Download citation

Publish with us

Policies and ethics