Skip to main content

The Total Information Carried by the Light

  • Chapter
  • First Online:
  • 767 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter theoretically establishes the quantum limit on the total information carried by the collected light, using a simple approach analogous to the Heisenberg microscope.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The momentum flux of light in a medium has been highly controversial, with Abraham and Minkowski separately deriving it to be \(\frac{P_0}{n_m c}\) and \(\frac{n_m P_0}{ c}\) respectively, and with both forms confirmed by experiments [16]. The different forms have been shown to describe different physical quantities, as described in detail in Ref. [16]. It is the Minkowski form \(\frac{n_m P_0}{ c}\) which is appropriate to this problem, as this conserves kinetic momentum in light-matter interactions.

References

  1. D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 107(3), 1005–1010 (2010)

    Article  ADS  Google Scholar 

  2. I. Chavez, R. Huang, K. Henderson, E.-L. Florin, M.G. Raizen, Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008)

    Article  ADS  Google Scholar 

  3. W. Denk, W.W. Webb, Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt. 29(16), 2382–2391 (1990)

    Article  ADS  Google Scholar 

  4. R.W. Ditchburn, Light (Dover Publications, New York, 1991)

    Google Scholar 

  5. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011)

    Article  ADS  Google Scholar 

  6. A.A. Geraci, S.B. Papp, J. Kitching, Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010)

    Article  ADS  Google Scholar 

  7. G. Giannone, E. Hosy, F. Levet, A. Constals, K. Schulze, A. Sobolevsky, M. Rosconi, E. Gouaux, R. Tampé, D. Choquet, L. Cognet, Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99(4), 1303–1310 (2010)

    Article  ADS  Google Scholar 

  8. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  9. F. Gittes, C.F. Schmidt, Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23(1), 7–9 (1998)

    Article  ADS  Google Scholar 

  10. R. Huang, I. Chavez, K.M. Taute, B. Lukić, S. Jeney, M.G. Raizen, E.-L. Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011)

    Article  Google Scholar 

  11. D. R. Huffman, C. F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)

    Google Scholar 

  12. A. Jannasch, A.F. Demirörs, P.D.J. van Oostrum, A. van Blaaderen, E. Schäffer, Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photon. 6, 469–473 (2012)

    Article  ADS  Google Scholar 

  13. M. Kolobov, C. Fabre, Quantum limits on optical resolution. Phys. Rev. Lett. 85(18), 3789–3792 (2000)

    Article  ADS  Google Scholar 

  14. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, V. Sandoghdar, High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923 (2009)

    Article  Google Scholar 

  15. T. Li, S. Kheifets, M.G. Raizen, Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)

    Article  Google Scholar 

  16. P.W. Milonni, R.W. Boyd, Momentum of light in a dielectric medium. Adv. Opt. Photon. 2(4), 519–553 (2010)

    Article  Google Scholar 

  17. J.R. Moffitt, Y.R. Chemla, S.B. Smith, C. Bustamante, Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)

    Article  Google Scholar 

  18. A. Naik, O. Buu, M. LaHaye, A. Armour, A. Clerk, M. Blencowe, K. Schwab, Cooling a nanomechanical resonator with quantum back-action. Nature 443(7108), 193–196 (2006)

    Article  ADS  Google Scholar 

  19. T. Nieminen, V. Loke, A. Stilgoe, G. Knöner, A. Brańczyk, N. Heckenberg, H. Rubinsztein-Dunlop, Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt 9(8), S196 (2007)

    Article  ADS  Google Scholar 

  20. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J. 84(2), 1308–1316 (2003)

    Article  ADS  Google Scholar 

  21. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015 (2012)

    Article  ADS  Google Scholar 

  22. A. Stilgoe, T. Nieminen, G. Knöener, N. Heckenberg, H. Rubinsztein-Dunlop, The effect of Mie resonances on trapping in optical tweezers. Opt. Express 16(19), 15039–15051 (2008)

    Article  ADS  Google Scholar 

  23. J.W. Tay, M.T.L. Hsu, W.P. Bowen, Quantum limited particle sensing in optical tweezers. Phys. Rev. A 80(6), 063806 (2009)

    Article  ADS  Google Scholar 

  24. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013)

    Article  ADS  Google Scholar 

  25. M.A. Taylor, J. Knittel, W.P. Bowen, Fundamental constraints on particle tracking with optical tweezers. New J. Phys. 15, 023018 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). The Total Information Carried by the Light. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_2

Download citation

Publish with us

Policies and ethics