Skip to main content

Further Extensions

  • Chapter
  • First Online:
Quantum Microscopy of Biological Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 729 Accesses

Abstract

Chapter 10 of this thesis demonstrated quantum enhanced particle tracking, and Chaps. 11 and 12 applied this to biological measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In addition to these publications, there are many more which are not shown because they did not provide results from which the sensitivity could be estimated. As such, this is not an exhaustive comparison. Experiments with sensitivity worse than 1  nm Hz\(^{-1/2}\) have also been excluded.

References

  1. M. Atakhorrami, C. Schmidt, High-bandwidth one-and two-particle microrheology in solutions of wormlike micelles. Rheol. Acta 45(4), 449–456 (2006)

    Article  Google Scholar 

  2. H.T. Beier, C.C. Roth, G.P. Tolstykh, B.L. Ibey, Resolving the spatial kinetics of electric pulse-induced ion release. Biochem. Biophys. Res. Commun. 423(4), 863–866 (2012)

    Article  Google Scholar 

  3. P.M. Bendix, L.B. Oddershede, Expanding the optical trapping range of lipid vesicles to the nanoscale. Nano Lett. 11(12), 5431–5437 (2011)

    Article  ADS  Google Scholar 

  4. I. Chavez, R. Huang, K. Henderson, E.-L. Florin, M.G. Raizen, Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008)

    Article  ADS  Google Scholar 

  5. J.C. Crocker, M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh, D.A. Weitz, Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85(4), 888 (2000)

    Article  ADS  Google Scholar 

  6. F. Czerwinski, A.C. Richardson, L.B. Oddershede, Quantifying noise in optical tweezers by allan variance. Opt. Express 17, 13255–13269 (2009)

    Article  ADS  Google Scholar 

  7. W. Denk, W.W. Webb, Optical measurement of picometer displacements of transparent microscopic objects. Appl. Opt. 29(16), 2382–2391 (1990)

    Article  ADS  Google Scholar 

  8. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011)

    Article  ADS  Google Scholar 

  9. M.A. Friedl, M. Schmoll, C.P. Kubicek, I.S. Druzhinina, Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. Microbiology 154(4), 1229–1241 (2008)

    Article  Google Scholar 

  10. G.M. Gibson, J. Leach, S. Keen, A.J. Wright, M.J. Padgett, Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt. Express 16(19), 14561–14570 (2008)

    Article  ADS  Google Scholar 

  11. F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, C. Schmidt, Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79(17), 3286–3289 (1997)

    Article  ADS  Google Scholar 

  12. A. Gupta, P. Avci, M. Sadasivam, R. Chandran, N. Parizotto, D. Vecchio, W.C. Antunes-Melo, T. Dai, L.Y. Chiang, M.R. Hamblin, Shining light on nanotechnology to help repair and regeneration. Biotechnol. Adv. 31, 607–631 (2012)

    Article  Google Scholar 

  13. F. Hajizadeh, S.S. Reihani, Optimized optical trapping of gold nanoparticles. Opt. Express 18(2), 551–559 (2010)

    Article  ADS  Google Scholar 

  14. P.M. Hansen, V.K. Bhatia, N. Harrit, L. Oddershede, Expanding the optical trapping range of gold nanoparticles. Nano Lett. 5(10), 1937–1942 (2005)

    Article  ADS  Google Scholar 

  15. T. Heimburg, A.D. Jackson, On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA 102(28), 9790–9795 (2005)

    Article  ADS  Google Scholar 

  16. T. Heimburg, A.D. Jackson, The thermodynamics of general anesthesia. Biophys. J. 92(9), 3159–3165 (2007)

    Article  ADS  Google Scholar 

  17. R. Hildner, D. Brinks, J.B. Nieder, R.J. Cogdell, N.F. van Hulst, Quantum coherent energy transfer over varying pathways in single light-harvesting complexes. Science 340(6139), 1448–1451 (2013)

    Article  ADS  Google Scholar 

  18. R. Huang, I. Chavez, K.M. Taute, B. Lukić, S. Jeney, M.G. Raizen, E.-L. Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011)

    Article  Google Scholar 

  19. A. Jannasch, A.F. Demirörs, P.D.J. van Oostrum, A. van Blaaderen, E. Schäffer, Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photon. 6, 469–473 (2012)

    Article  ADS  Google Scholar 

  20. A. Jannasch, M. Mahamdeh, E. Schäffer, Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys. Rev. Lett. 107(22), 228301 (2011)

    Article  ADS  Google Scholar 

  21. S. Keen, J. Leach, G. Gibson, M. Padgett, Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers. J. Opt. A: Pure Appl. Opt. 9(8), S264–S266 (2007)

    Article  ADS  Google Scholar 

  22. G.H. Koenderink, M. Atakhorrami, F.C. MacKintosh, C.F. Schmidt, High-frequency stress relaxation in semiflexible polymer solutions and networks. Phys. Rev. Lett. 96, 138307 (2006)

    Article  ADS  Google Scholar 

  23. T. Li, M.G. Raizen, Brownian motion at short time scales. Ann. Phys. 525, 281–295 (2013)

    Article  Google Scholar 

  24. G. Masada, T. Suzudo, Y. Satoh, H. Ishizuki, T. Taira, A. Furusawa, Efficient generation of highly squeezed light with periodically poled MgO: LiNbO\(_{3}\). Opt. Express 18(12), 13114–13121 (2010)

    Article  ADS  Google Scholar 

  25. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81(1), 013814 (2010)

    Article  ADS  Google Scholar 

  26. O. Otto, F. Czerwinski, J.L. Gornall, G. Stober, L.B. Oddershede, R. Seidel, U.F. Keyser, Real-time particle tracking at 10,000 fps using optical fiber illumination. Opt. Express 18(22), 22722–22733 (2010)

    Article  ADS  Google Scholar 

  27. A.G. Pakhomov, A.M. Bowman, B.L. Ibey, F.M. Andre, O.N. Pakhomova, K.H. Schoenbach, Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem. Biophys. Res. Commun. 385(2), 181–186 (2009)

    Article  Google Scholar 

  28. G. Panitchayangkoon, D.V. Voronine, D. Abramavicius, J.R. Caram, N.H. Lewis, S. Mukamel, G.S. Engel, Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proc. Natl. Acad. Sci. USA 108(52), 20908–20912 (2011)

    Article  ADS  Google Scholar 

  29. E.J. Peterman, M.A. van Dijk, L.C. Kapitein, C.F. Schmidt, Extending the bandwidth of optical-tweezers interferometry. Rev. Sci. Instrum. 74(7), 3246–3249 (2003)

    Article  ADS  Google Scholar 

  30. A. Pralle, M. Prummer, E.-L. Florin, E. Stelzer, J. Hörber, Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light. Microsc. Res. Tech. 44(5), 378–386 (1999)

    Article  Google Scholar 

  31. S.N.S. Reihani, S.A. Mir, A.C. Richardson, L.B. Oddershede, Significant improvement of optical traps by tuning standard water immersion objectives. J. Opt. 13(10), 105301 (2011)

    Article  ADS  Google Scholar 

  32. C. Selhuber-Unkel, P. Yde, K. Berg-Sørensen, L.B. Oddershede, Variety in intracellular diffusion during the cell cycle. Phys. Biol. 6(2), 025015 (2009)

    Google Scholar 

  33. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015 (2012)

    Article  ADS  Google Scholar 

  34. K. Svoboda, S.M. Block, Optical trapping of metallic Rayleigh particles. Opt. Lett. 19(13), 930–932 (1994)

    Article  ADS  Google Scholar 

  35. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721 (1993)

    Article  ADS  Google Scholar 

  36. I. Tasaki, K. Kusano, P. Byrne, Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J. 55(6), 1033–1040 (1989)

    Article  ADS  Google Scholar 

  37. I.M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, K. Berg-Sørensen, Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004)

    Google Scholar 

  38. A. van der Horst, P.D.J. van Oostrum, A. Moroz, A. van Blaaderen, M. Dogterom, High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. Appl. Opt. 47(17), 3196–3202 (2008)

    Article  ADS  Google Scholar 

  39. G. Wang, R. Prabhakar, Y. Gao, E. Sevick, Micro-rheology near fluid interfaces. J. Opt. 13(4), 044009 (2011)

    Article  ADS  Google Scholar 

  40. N. Willenbacher, C. Oelschlaeger, Dynamics and structure of complex fluids from high frequency mechanical and optical rheometry. Curr. Opin. Colloid Interface Sci. 12(1), 43–49 (2007)

    Article  Google Scholar 

  41. N. Willenbacher, C. Oelschlaeger, M. Schopferer, P. Fischer, F. Cardinaux, F. Scheffold, Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys. Rev. Lett. 99(6), 068302 (2007)

    Article  ADS  Google Scholar 

  42. R. Zwanzig, M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid Mech. 69(part 1), 21–25 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). Further Extensions. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_13

Download citation

Publish with us

Policies and ethics