Skip to main content

Subdiffraction-Limited Quantum Imaging of a Living Cell

  • Chapter
  • First Online:
  • 812 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter extends the biological experiments described in Chap. 11 to allow observation of spatial structure, and in doing so, demonstrates both subdiffraction-limited quantum metrology and quantum enhanced spatial resolution for the first time in a biological context. As in the previous experiment, thermal motion of embedded lipid nanoparticles is used to study the mechanical properties of the cytoplasm of a yeast cell. Here, however, the thermal motion is characterized with quantum enhanced precision through an extended region of the cell, with the gradual drift of the particle bringing it into contact with new cellular structure. This quantum enhanced photonic force microscope allows spatial structure within the cell to be mapped at length scales down to 10 nm. Control experiments in water show a 14 % resolution enhancement compared to experiments with coherent light. This confirms the longstanding prediction that quantum correlated light can enhance spatial resolution at the nanoscale and in biology. In this demonstration, however, the nanoparticle motion is only characterized along a single axis, and the unknown motion along the other two axes precludes any reliable reconstruction of the underlying structure. The challenge remains to combine this technique with 3D particle tracking, which would allow construction of quantum enhanced images of nanoscale biological structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that Ref. [5] claims to have enhanced resolution via use of squeezed light. We disregard this claim as unsubstantiated; for details see Appendix B.

References

  1. S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P.K. Lam, H.-A. Bachor, Programmable multimode quantum networks. Nat. Commun. 3, 1026 (2012)

    Article  ADS  Google Scholar 

  2. E. Bertseva, A. Singh, J. Lekki, P. Thévenaz, M. Lekka, S. Jeney, G. Gremaud, S. Puttini, W. Nowak, G. Dietler, L. Forró, M. Unser, A. Kulik, Intracellular nanomanipulation by a photonic-force microscope with real-time acquisition of a 3D stiffness matrix. Nanotechnology 20(28), 285709 (2009)

    Article  Google Scholar 

  3. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Entangled images from four-wave mixing. Science 321(5888), 544–547 (2008)

    Article  ADS  Google Scholar 

  4. G. Brida, M. Genovese, I.R. Berchera, Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010)

    Article  ADS  Google Scholar 

  5. L. Chen, S.W. Bi, B.Z. Lu, Experimental study on the imaging of the squeezed state light at 1064 nm. Laser Phys. 21(7), 1202–1207 (2011)

    Article  ADS  Google Scholar 

  6. S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, J. Klafter, Probing microscopic origins of confined subdiffusion by first-passage observables. Proc. Natl. Acad. Sci. USA 105(15), 5675–5680 (2008)

    Article  ADS  Google Scholar 

  7. H.-B. Fei, B.M. Jost, S. Popescu, B.E. Saleh, M.C. Teich, Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78(9), 1679–1682 (1997)

    Article  ADS  Google Scholar 

  8. E.-L. Florin, A. Pralle, J. Heinrich Hörber, E.H. Stelzer, Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol. 119(2), 202–211 (1997)

    Google Scholar 

  9. H. Frauenfelder, P. Fenimore, G. Chen, B. McMahon, Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 103(42), 15469–15472 (2006)

    Article  ADS  Google Scholar 

  10. M. Friese, A. Truscott, H. Rubinsztein-Dunlop, N. Heckenberg, Three-dimensional imaging with optical tweezers. Appl. Opt. 38(31), 6597–6603 (1999)

    Article  ADS  Google Scholar 

  11. L.P. Ghislain, W.W. Webb, Scanning-force microscope based on an optical trap. Opt. Lett. 18(19), 1678–1680 (1993)

    Article  ADS  Google Scholar 

  12. F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, C. Schmidt, Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79(17), 3286–3289 (1997)

    Article  ADS  Google Scholar 

  13. G. Guigas, M. Weiss, Sampling the cell with anomalous diffusion-the discovery of slowness. Biophys. J. 94(1), 90–94 (2008)

    Article  ADS  Google Scholar 

  14. J. Janousek, K. Wagner, J. Morizur, N. Treps, P. Lam, C. Harb, H. Bachor, Optical entanglement of co-propagating modes. Nat. Photon. 3(7), 399–402 (2009)

    Article  ADS  Google Scholar 

  15. S. Kaufmann, S. Steinert, L.P. McGuinness, B.C. Johnson, T. Ohshima, F. Caruso, et al., Detection of atomic spin labels in a lipid bi-layer using a single-spin nanodiamond probe. Proc. Natl. Acad. Sci. USA 110(27), 10894–10898 (2013)

    Google Scholar 

  16. M. Kolobov, C. Fabre, Quantum limits on optical resolution. Phys. Rev. Lett. 85(18), 3789–3792 (2000)

    Article  ADS  Google Scholar 

  17. G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, M. Lukin, Nanometer scale quantum thermometry in a living cell. Nature 500, 54–59 (2013)

    Article  ADS  Google Scholar 

  18. M. Lassen, V. Delaubert, J. Janousek, K. Wagner, H.-A. Bachor, P.K. Lam, N. Treps, P. Buchhave, C. Fabre, C. Harb, Tools for multimode quantum information: modulation, detection, and spatial quantum correlations. Phys. Rev. Lett. 98(8), 083602 (2007)

    Article  ADS  Google Scholar 

  19. D. Le Sage, K. Arai, D. Glenn, S. DeVience, L. Pham, L. Rahn-Lee, M. Lukin, A. Yacoby, A. Komeili, R. Walsworth, Optical magnetic imaging of living cells. Nature 496(7446), 486–489 (2013)

    Article  ADS  Google Scholar 

  20. E. Lopaeva, I.R. Berchera, I. Degiovanni, S. Olivares, G. Brida, M. Genovese, Experimental realization of quantum illumination. Phys. Rev. Lett. 110(15), 153603 (2013)

    Article  ADS  Google Scholar 

  21. L. Lopez, N. Treps, B. Chalopin, C. Fabre, A. Maître, Quantum processing of images by continuous wave optical parametric amplification. Phys. Rev. Lett. 100(1), 013604 (2008)

    Article  ADS  Google Scholar 

  22. R. Lubart, R. Lavi, H. Friedmann, S. Rochkind, Photochemistry and photobiology of light absorption by living cells. Photomed. Laser Surg. 24(2), 179–185 (2006)

    Article  Google Scholar 

  23. T. Mason, K. Ganesan, J. Van Zanten, D. Wirtz, S. Kuo, Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79(17), 3282–3285 (1997)

    Article  ADS  Google Scholar 

  24. L.P. McGuinness, Y. Yan, A. Stacey, D.A. Simpson, L.T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R.E. Scholten, L.C.L. Hollenberg, Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotech. 6, 358–363 (2011)

    Article  ADS  Google Scholar 

  25. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81(1), 013814 (2010)

    Article  ADS  Google Scholar 

  26. A. Mosset, F. Devaux, E. Lantz, Spatially noiseless optical amplification of images. Phys. Rev. Lett 94(22), 223603 (2005)

    Article  ADS  Google Scholar 

  27. M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E. Saleh, M.C. Teich, Quantum optical coherence tomography of a biological sample. Opt. Commun. 282(6), 1154–1159 (2009)

    Article  ADS  Google Scholar 

  28. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    Article  Google Scholar 

  29. T. Ono, R. Okamoto, S. Takeuchi, An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013)

    ADS  Google Scholar 

  30. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J. 84(2), 1308–1316 (2003)

    Article  ADS  Google Scholar 

  31. T. Pittman, Y. Shih, D. Strekalov, A. Sergienko, Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A 52(5), R3429 (1995)

    Article  ADS  Google Scholar 

  32. A. Pralle, E.-L. Florin, E. Stelzer, J. Hörber, Local viscosity probed by photonic force microscopy. Appl. Phys. A 66, S71–S73 (1998)

    Article  ADS  Google Scholar 

  33. A. Rohrbach, C. Tischer, D. Neumayer, E.-L. Florin, E.H. Stelzer, Trapping and tracking a local probe with a photonic force microscope. Rev. Sci. Instrum. 75(6), 2197–2210 (2004)

    Article  ADS  Google Scholar 

  34. T. Scholz, S.M. Altmann, M. Antognozzi, C. Tischer, J.-K. Heinrich, Hörber, B. Brenner, Mechanical properties of single myosin molecules probed with the photonic force microscope. Biophys. J. 88(1), 360–371 (2005)

    Google Scholar 

  35. C. Selhuber-Unkel, P. Yde, K. Berg-Sørensen, L.B. Oddershede, Variety in intracellular diffusion during the cell cycle. Phys. Biol. 6(2), 025015 (2009)

    Google Scholar 

  36. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015 (2012)

    Article  ADS  Google Scholar 

  37. S. Steinert, F. Ziem, L. Hall, A. Zappe, M. Schweikert, A. Aird, G. Balasubramanian, L. Hollenberg, J. Wrachtrup, Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4, 1607 (2013)

    Article  ADS  Google Scholar 

  38. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 4(1), 011017 (2014)

    Google Scholar 

  39. M.A. Taylor, J. Knittel, W.P. Bowen, Fundamental constraints on particle tracking with optical tweezers. New J. Phys. 15, 023018 (2013)

    Article  ADS  Google Scholar 

  40. C. Tischer, S. Altmann, S. Finger, J. Horber, E.H. Stelzer, E.-L. Florin, Three-dimensional thermal noise imaging. Appl. Phys. Lett. 79(23), 3878–3880 (2001)

    Google Scholar 

  41. I.M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, K. Berg-Sørensen, Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004)

    Google Scholar 

  42. N. Treps, U. Andersen, B. Buchler, P.K. Lam, A. Maître, H.-A. Bachor, C. Fabre, Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002). May

    Article  ADS  Google Scholar 

  43. N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.-A. Bachor, P.K. Lam, A quantum laser pointer. Science 301, 940–943 (2003)

    Article  ADS  Google Scholar 

  44. M. Tsang, Quantum imaging beyond the diffraction limit by optical centroid measurements. Phys. Rev. Lett. 102, 253601 (2009). Jun

    Article  ADS  Google Scholar 

  45. Y. Tseng, J. Lee, T. Kole, I. Jiang, D. Wirtz, Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117(10), 2159–2167 (2004)

    Article  Google Scholar 

  46. M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87(5), 3518–3524 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). Subdiffraction-Limited Quantum Imaging of a Living Cell. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_12

Download citation

Publish with us

Policies and ethics