Skip to main content

Surpassing the Quantum Limit

  • Chapter
  • First Online:
Book cover Quantum Microscopy of Biological Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 762 Accesses

Abstract

This chapter describes the development of the first optical tweezers experiment with quantum enhanced particle tracking sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Aasi et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7(8), 613–619 (2013)

    Article  ADS  Google Scholar 

  2. J. Abadie et al., A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Article  Google Scholar 

  3. S. Armstrong, J.-F. Morizur, J. Janousek, B. Hage, N. Treps, P.K. Lam, H.-A. Bachor, Programmable multimode quantum networks. Nat. Commun. 3, 1026 (2012)

    Article  ADS  Google Scholar 

  4. G. Brida, M. Genovese, I.R. Berchera, Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010)

    Article  ADS  Google Scholar 

  5. M. Buchanan, M. Atakhorrami, J.F. Palierne, F.C. MacKintosh, C.F. Schmidt, High-frequency microrheology of wormlike micelles. Phys. Rev. E 72, 011504 (2005)

    Article  ADS  Google Scholar 

  6. D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 107(3), 1005–1010 (2010)

    Article  ADS  Google Scholar 

  7. A. Crespi, M. Lobino, J. Matthews, A. Politi, C. Neal, R. Ramponi, R. Osellame, J. O’Brien, Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100(23), 233704 (2012)

    Article  ADS  Google Scholar 

  8. V. Delaubert, D. Shaddock, P. Lam, B. Buchler, H. Bachor, D. McClelland, Generation of a phase-flipped Gaussian mode for optical measurements. J. Opt. A: Pure Appl. Opt. 4(4), 393 (2002)

    Article  ADS  Google Scholar 

  9. R. Demkowicz-Dobrzański, J. Kołodyński, M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Article  Google Scholar 

  10. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011)

    Article  ADS  Google Scholar 

  11. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    Article  ADS  Google Scholar 

  12. J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 2004)

    Google Scholar 

  13. R. Huang, I. Chavez, K.M. Taute, B. Lukić, S. Jeney, M.G. Raizen, E.-L. Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576580 (2011)

    Article  Google Scholar 

  14. M. Kolobov, C. Fabre, Quantum limits on optical resolution. Phys. Rev. Lett. 85(18), 3789–3792 (2000)

    Article  ADS  Google Scholar 

  15. P.K. Lam, Applications of quantum electro-optic control and squeezed light. Ph.D. thesis, Australian National University, 1998

    Google Scholar 

  16. K. McKenzie, N. Grosse, W. Bowen, S. Whitcomb, M. Gray, D. McClelland, P. Lam, Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett. 93(16), 161105 (2004)

    Article  ADS  Google Scholar 

  17. T. Nagata, R. Okamoto, J. O’Brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726–729 (2007)

    Article  ADS  Google Scholar 

  18. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    Article  Google Scholar 

  19. K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008)

    Article  Google Scholar 

  20. T. Nieminen, V. Loke, A. Stilgoe, G. Knöner, A. Brańczyk, N. Heckenberg, H. Rubinsztein-Dunlop, Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt. 9(8), S196 (2007)

    Article  ADS  Google Scholar 

  21. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J. 84(2), 1308–1316 (2003)

    Article  ADS  Google Scholar 

  22. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015 (2012)

    Article  ADS  Google Scholar 

  23. J.W. Tay, M.T.L. Hsu, W.P. Bowen, Quantum limited particle sensing in optical tweezers. Phys. Rev. A 80(6), 063806 (2009)

    Article  ADS  Google Scholar 

  24. M.A. Taylor, W.P. Bowen, Enhanced sensitivity in dark-field microscopy by optimizing the illumination angle. Appl. Opt. 52(23), 5718–5723 (2013)

    Article  ADS  Google Scholar 

  25. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013)

    Article  ADS  Google Scholar 

  26. M.A. Taylor, J. Knittel, W.P. Bowen, Fundamental constraints on particle tracking with optical tweezers. New J. Phys. 15, 023018 (2013)

    Article  ADS  Google Scholar 

  27. S. Tolic-Nørrelykke, E. Schaffer, J. Howard, F. Pavone, F. Julicher, H. Flyvbjerg, Calibration of optical tweezers with positional detection in the back focal plane. Rev. Sci. Instrum. 77(10), 103101–103101 (2006)

    Google Scholar 

  28. N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.-A. Bachor, P.K. Lam, A quantum laser pointer. Science 301, 940–943 (2003)

    Article  ADS  Google Scholar 

  29. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, R. Schnabel, Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett. 97(1), 011101 (2006)

    Article  ADS  Google Scholar 

  30. F. Wolfgramm, A. Cerè, F.A. Beduini, A. Predojević, M. Koschorreck, M.W. Mitchell, Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)

    Article  ADS  Google Scholar 

  31. B. Yurke, P. Grangier, R.E. Slusher, Squeezed-state enhanced two-frequency interferometry. J. Opt. Soc. Am. B 4, 1677–1682 (1987)

    Article  ADS  Google Scholar 

  32. P. Zemánek, A. Jonáš, L. Šrámek, M. Liška, Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt. Commun. 151, 273–285 (1998)

    Article  ADS  Google Scholar 

  33. Z. Zhai, J. Gao, Low-frequency phase measurement with high-frequency squeezing. Opt. Express 20(16), 18173–18179 (2012)

    Article  ADS  Google Scholar 

  34. R. Zwanzig, M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid Mech. 69(part 1), 21–25 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). Surpassing the Quantum Limit. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_10

Download citation

Publish with us

Policies and ethics