Skip to main content

Introduction

  • Chapter
  • First Online:
Quantum Microscopy of Biological Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 780 Accesses

Abstract

The quantum nature of light fundamentally constrains the sensitivity of any optical measurement [96].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although this limit is widely used, there is no clear consensus as to its name. It is most often referred to as either the quantum noise limit [156, 165, 171] or the shot noise limit [27, 72, 184], often interchangeably [1], though other names are also used [84, 172].

  2. 2.

    Note that the phrase “standard quantum limit” carries two distinct meanings in different communities. While much of the quantum metrology community uses the definition here, the optomechanics community defines it as the best sensitivity possible with arbitrary optical power, which occurs when quantum back-action from the measurement is equal to the measurement imprecision [66].

  3. 3.

    This experiment was published after the quantum enhanced microscopy experiment reported in Chaps. 10 and 11 of this thesis (Ref. [165]), but before this was extended to spatially resolved imaging as described in Chap. 12 (Ref. [166]). Consequently, this thesis reports the first experiment to achieve quantum enhanced microscopy, though Ref. [125] was the first to demonstrate quantum enhanced microscopic imaging.

References

  1. J. Aasi et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7(8), 613–619 (2013)

    ADS  Google Scholar 

  2. J. Abadie et al., A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011)

    Google Scholar 

  3. I. Afek, O. Ambar, Y. Silberberg, High-NOON states by mixing quantum and classical light. Science 328(5980), 879–881 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  4. S.S. Andersen, A.D. Jackson, T. Heimburg, Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. 88(2), 104–113 (2009)

    Google Scholar 

  5. R. Appali, S. Petersen, U. v. Rienen, A comparision of Hodgkin-Huxley and soliton neural theories. Adv. Radio Sci. 8(6), 75–79 (2010)

    Google Scholar 

  6. Y. Arita, M. Mazilu, K. Dholakia, Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013)

    ADS  Google Scholar 

  7. A. Ashkin, Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61(2), 569–582 (1992)

    ADS  Google Scholar 

  8. A. Ashkin, J. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1520 (1987)

    ADS  Google Scholar 

  9. A. Ashkin, J. Dziedzic, Internal cell manipulation using infrared laser traps. Proc. Natl. Acad. Sci. USA 86(20), 7914–7918 (1989)

    ADS  Google Scholar 

  10. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    ADS  Google Scholar 

  11. A. Ashkin, J. Dziedzic, T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature 330(6150), 769–771 (1987)

    ADS  Google Scholar 

  12. A. Ashkin, K. Schütze, J. Dziedzic, U. Euteneuer, M. Schliwa, Force generation of organelle transport measured in vivo by an infrared laser trap. Nature 348, 346–348 (1990)

    ADS  Google Scholar 

  13. M. Atakhorrami, High bandwidth microrheology of complex fluids and biopolymer networks. Ph.D. thesis, Vrije Universiteit, Amsterdam, 2006

    Google Scholar 

  14. M. Atakhorrami, C. Schmidt, High-bandwidth one-and two-particle microrheology in solutions of wormlike micelles. Rheol. Acta 45(4), 449–456 (2006)

    Google Scholar 

  15. M. Auzinsh, D. Budker, D. Kimball, S. Rochester, J. Stalnaker, A. Sushkov, V. Yashchuk, Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93(17), 173002 (2004)

    ADS  Google Scholar 

  16. A. Bassi, K. Lochan, S. Satin, T.P. Singh, H. Ulbricht, Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85(2), 471 (2013)

    ADS  Google Scholar 

  17. H.T. Beier, C.C. Roth, G.P. Tolstykh, B.L. Ibey, Resolving the spatial kinetics of electric pulse-induced ion release. Biochem. Biophys. Res. Commun. 423(4), 863–866 (2012)

    Google Scholar 

  18. S.J. Benkovic, J. Theriot, D. Ringe, Open questions-in brief: beyond-omics, missing motor proteins, and getting from molecules to organisms. BMC Biol. 11(1), 8 (2013)

    Google Scholar 

  19. C.H. Bennett, D.P. DiVincenzo, Quantum information and computation. Nature 404(6775), 247–255 (2000)

    ADS  Google Scholar 

  20. K. Berg-Sørensen, H. Flyvbjerg, Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 75(3), 594–612 (2004)

    Google Scholar 

  21. G. Bison, R. Wynands, A. Weis, Dynamical mapping of the human cardiomagnetic field with a room-temperature, laser-optical sensor. Opt. Express 11(3), 904–909 (2003)

    ADS  Google Scholar 

  22. G. Bison, R. Wynands, A. Weis, A laser-pumped magnetometer for the mapping of human cardiomagnetic fields. Appl. Phys. B 76(3), 325–328 (2003)

    ADS  Google Scholar 

  23. G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, A. Weis, A room temperature 19-channel magnetic field mapping device for cardiac signals. Appl. Phys. Lett. 95(17), 173701 (2009)

    ADS  Google Scholar 

  24. S.M. Block, L.S. Goldstein, B.J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    ADS  Google Scholar 

  25. R.W. Bowman, M.J. Padgett, Optical trapping and binding. Rep. Prog. Phys. 76(2), 026401 (2013)

    ADS  Google Scholar 

  26. R. Brau, J. Ferrer, H. Lee, C. Castro, B. Tam, P. Tarsa, P. Matsudaira, M. Boyce, R. Kamm, M. Lang, Passive and active microrheology with optical tweezers. J. Opt. A: Pure Appl. Opt 9(8), S103–S112 (2007)

    ADS  Google Scholar 

  27. G. Brida, M. Genovese, I.R. Berchera, Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010)

    ADS  Google Scholar 

  28. W.E. Brownell, F. Qian, B. Anvari, Cell membrane tethers generate mechanical force in response to electrical stimulation. Biophys. J. 99(3), 845–852 (2010)

    ADS  Google Scholar 

  29. Z. Bryant, F.C. Oberstrass, A. Basu, Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 22(3), 304–312 (2012)

    Google Scholar 

  30. Z. Bryant, M.D. Stone, J. Gore, S.B. Smith, N.R. Cozzarelli, C. Bustamante, Structural transitions and elasticity from torque measurements on DNA. Nature 424(6946), 338–341 (2003)

    ADS  Google Scholar 

  31. M. Buchanan, M. Atakhorrami, J.F. Palierne, F.C. MacKintosh, C.F. Schmidt, High-frequency microrheology of wormlike micelles. Phys. Rev. E 72, 011504 (2005)

    ADS  Google Scholar 

  32. D. Budker, M. Romalis, Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Google Scholar 

  33. C. Bustamante, Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics. Q. Rev. Biophys. 38(4), 291–301 (2005)

    Google Scholar 

  34. C. Bustamante, Z. Bryant, S.B. Smith, Ten years of tension: single-molecule DNA mechanics. Nature 421(6921), 423–427 (2003)

    ADS  Google Scholar 

  35. C. Bustamante, Y. Chemla, N. Forde, D. Izhaky, Mechanical processes in biochemistry. Annu. Rev. Biochem. 73(1), 705–748 (2004)

    Google Scholar 

  36. D. Carberry, J.C. Reid, G. Wang, E.M. Sevick, D.J. Searles, D.J. Evans, Fluctuations and irreversibility: an experimental demonstration of a second-law-like theorem using a colloidal particle held in an optical trap. Phys. Rev. Lett. 92(14), 140601 (2004)

    ADS  Google Scholar 

  37. C.M. Caves, Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)

    ADS  Google Scholar 

  38. D.E. Chang, C.A. Regal, S.B. Papp, D.J. Wilson, J. Ye, O. Painter, H.J. Kimble, P. Zoller, Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. USA 107(3), 1005–1010 (2010)

    ADS  Google Scholar 

  39. A.C. Charles, J.E. Merrill, E.R. Dirksen, M.J. Sandersont, Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6(6), 983–992 (1991)

    Google Scholar 

  40. I. Chavez, R. Huang, K. Henderson, E.-L. Florin, M.G. Raizen, Development of a fast position-sensitive laser beam detector. Rev. Sci. Instrum. 79, 105104 (2008)

    ADS  Google Scholar 

  41. J. Clarke, SQUID fundamentals, in SQUID Sensors: Fundamentals, Fabrication and Applications (Springer, 1996), pp. 1–62

    Google Scholar 

  42. S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, J. Klafter, Probing microscopic origins of confined subdiffusion by first-passage observables. Proc. Natl. Acad. Sci. USA 105(15), 5675–5680 (2008)

    ADS  Google Scholar 

  43. E. Corsini, V. Acosta, N. Baddour, J. Higbie, B. Lester, P. Licht, B. Patton, M. Prouty, D. Budker, Search for plant biomagnetism with a sensitive atomic magnetometer. J. Appl. Phys. 109, 074701 (2011)

    ADS  Google Scholar 

  44. A. Crespi, M. Lobino, J. Matthews, A. Politi, C. Neal, R. Ramponi, R. Osellame, J. O’Brien, Measuring protein concentration with entangled photons. Appl. Phys. Lett. 100(23), 233704 (2012)

    ADS  Google Scholar 

  45. J.-M. Cui, F.-W. Sun, X.-D. Chen, Z.-J. Gong, G.-C. Guo, Quantum statistical imaging of particles without restriction of the diffraction limit. Phys. Rev. Lett. 110(15), 153901 (2013)

    ADS  Google Scholar 

  46. H. Dang, A. Maloof, M. Romalis, Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97(15), 151110 (2010)

    ADS  Google Scholar 

  47. R. Demkowicz-Dobrzański, J. Kołodyński, M. Guţă, The elusive Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 3, 1063 (2012)

    Google Scholar 

  48. J.P. Dowling, Quantum optical metrology-the lowdown on high-n00n states. Contemp. Phys. 49(2), 125–143 (2008)

    ADS  MathSciNet  Google Scholar 

  49. E. Dufresne, T. Squires, M. Brenner, D. Grier, Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys. Rev. Lett. 85(15), 3317–3320 (2000)

    ADS  Google Scholar 

  50. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, R. Schnabel, Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett. 104(25), 251102 (2010)

    ADS  Google Scholar 

  51. D. Engström, M.C. Varney, M. Persson, R.P. Trivedi, K.A. Bertness, M. Goksör, I.I. Smalyukh, Unconventional structure-assisted optical manipulation of high-index nanowires in liquid crystals. Opt. Express 20, 7741–8 (2012)

    ADS  Google Scholar 

  52. B. Essevaz-Roulet, U. Bockelmann, F. Heslot, Mechanical separation of the complementary strands of DNA. Proc. Natl. Acad. Sci. USA 94(22), 11935–11940 (1997)

    ADS  Google Scholar 

  53. C. Fang-Yen, M.C. Chu, H.S. Seung, R.R. Dasari, M.S. Feld, Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer. Opt. Lett. 29(17), 2028–2030 (2004)

    ADS  Google Scholar 

  54. C. Fang-Yen, S. Oh, Y. Park, W. Choi, S. Song, H.S. Seung, R.R. Dasari, M.S. Feld, Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy. Opt. Lett. 32(11), 1572–1574 (2007)

    ADS  Google Scholar 

  55. H.-B. Fei, B.M. Jost, S. Popescu, B.E. Saleh, M.C. Teich, Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78(9), 1679–1682 (1997)

    ADS  Google Scholar 

  56. R. Fenici, D. Brisinda, A.M. Meloni, Clinical application of magnetocardiography. Exp. Rev. Mol. Diagn. 5, 291–313 (2005)

    Google Scholar 

  57. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography-principles and applications. Rep. Prog. Phys. 66(2), 239 (2003)

    ADS  Google Scholar 

  58. R.D. Fields, Y. Ni, Nonsynaptic communication through ATP release from volume-activated anion channels in axons. Sci. Signal. 3(142), ra73 (2010)

    Google Scholar 

  59. R.A. Fine, F.J. Millero, Compressibility of water as a function of temperature and pressure. J. Chem. Phys. 59, 5529 (1973)

    ADS  Google Scholar 

  60. J.T. Finer, R.M. Simmons, J.A. Spudich, Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994)

    ADS  Google Scholar 

  61. M. Fox, Quantum Optics: An Introduction, vol. 15 (Oxford University Press, Oxford, 2006)

    Google Scholar 

  62. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478, 85–88 (2011)

    ADS  Google Scholar 

  63. H. Frauenfelder, P. Fenimore, G. Chen, B. McMahon, Protein folding is slaved to solvent motions. Proc. Natl. Acad. Sci. USA 103(42), 15469–15472 (2006)

    ADS  Google Scholar 

  64. J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotechnol. 21(11), 1361–1367 (2003)

    Google Scholar 

  65. A.A. Geraci, S.B. Papp, J. Kitching, Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010)

    ADS  Google Scholar 

  66. V. Giovannetti, S. Lloyd, L. Maccone, Quantum-enhanced measurements: beating the standard quantum limit. Science 306(5700), 1330–1336 (2004)

    ADS  Google Scholar 

  67. V. Giovannetti, S. Lloyd, L. Maccone, Quantum metrology. Phys. Rev. Lett. 96(1), 010401 (2006)

    ADS  MathSciNet  Google Scholar 

  68. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    ADS  Google Scholar 

  69. F. Gittes, C.F. Schmidt, Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23(1), 7–9 (1998)

    ADS  Google Scholar 

  70. F. Gittes, B. Schnurr, P. Olmsted, F. MacKintosh, C. Schmidt, Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79(17), 3286–3289 (1997)

    ADS  Google Scholar 

  71. W.J. Greenleaf, S.M. Block, Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 313(5788), 801 (2006)

    Google Scholar 

  72. H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch, First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110(18), 181101 (2013)

    ADS  Google Scholar 

  73. G. Guigas, C. Kalla, M. Weiss, Probing the nanoscale viscoelasticity of intracellular fluids in living cells. Biophys. J. 93(1), 316–323 (2007)

    ADS  Google Scholar 

  74. G. Guigas, M. Weiss, Sampling the cell with anomalous diffusion-the discovery of slowness. Biophys. J. 94(1), 90–94 (2008)

    ADS  Google Scholar 

  75. A.R. Guzman, M.R. Harpham, Ö. Süzer, M.M. Haley, T.G. Goodson III, Spatial control of entangled two-photon absorption with organic chromophores. J. Am. Chem. Soc. 132(23), 7840–7841 (2010)

    Google Scholar 

  76. M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalographytheory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413 (1993)

    ADS  Google Scholar 

  77. Y. Harada, T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt. Commun. 124(5–6), 529–541 (1996)

    ADS  Google Scholar 

  78. T. Heimburg, A.D. Jackson, On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA 102(28), 9790–9795 (2005)

    ADS  Google Scholar 

  79. T. Heimburg, A.D. Jackson, The thermodynamics of general anesthesia. Biophys. J. 92(9), 3159–3165 (2007)

    ADS  Google Scholar 

  80. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2(12), 932–940 (2005)

    Google Scholar 

  81. W.R. Hendee, C.J. Morgan, Magnetic resonance imaging part I-physical principles. West. J. Med. 141(4), 491 (1984)

    Google Scholar 

  82. U.B. Hoff, G.I. Harris, L.S. Madsen, H. Kerdoncuff, M. Lassen, B.M. Nielsen, W.P. Bowen, U.L. Andersen, Quantum-enhanced micromechanical displacement sensitivity. Opt. Lett. 38(9), 1413–1415 (2013)

    ADS  Google Scholar 

  83. C. Hong, Z. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044–2046 (1987)

    ADS  Google Scholar 

  84. T. Horrom, R. Singh, J.P. Dowling, E.E. Mikhailov, Quantum-enhanced magnetometer with low-frequency squeezing. Phys. Rev. A 86(2), 023803 (2012)

    ADS  Google Scholar 

  85. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    ADS  Google Scholar 

  86. R. Huang, I. Chavez, K.M. Taute, B. Lukić, S. Jeney, M.G. Raizen, E.-L. Florin, Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid. Nat. Phys. 7, 576–580 (2011)

    Google Scholar 

  87. D.R. Huffman, C.F. Bohren, Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 2008)

    Google Scholar 

  88. B.L. Ibey, C.C. Roth, A.G. Pakhomov, J.A. Bernhard, G.J. Wilmink, O.N. Pakhomova, Dose-dependent thresholds of 10-ns electric pulse induced plasma membrane disruption and cytotoxicity in multiple cell lines. PLoS ONE 6(1), e15642 (2011)

    ADS  Google Scholar 

  89. B. Jagatap, W.J. Meath, On the competition between permanent dipole and virtual state two-photon excitation mechanisms, and two-photon optical excitation pathways, in molecular excitation. Chem. Phys. Lett. 258(1), 293–300 (1996)

    ADS  Google Scholar 

  90. A. Jannasch, M. Mahamdeh, E. Schäffer, Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. Phys. Rev. Lett. 107(22), 228301 (2011)

    ADS  Google Scholar 

  91. C.N. Johnson, P. Schwindt, M. Weisend, Multi-sensor magnetoencephalography with atomic magnetometers. Phys. Med. Biol. 58(17), 6065 (2013)

    Google Scholar 

  92. Z. Kam, Microscopic differential interference contrast image processing by line integration (LID) and deconvolution. Bioimaging 6(4), 166–176 (1998)

    Google Scholar 

  93. S. Kheifets, A. Simha, K. Melin, T. Li, M.G. Raizen, Observation of Brownian motion in liquids at short times:iInstantaneous velocity and memory loss. Science 343(6178), 1493–1496 (2014)

    ADS  Google Scholar 

  94. N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, M. Aspelmeyer, Cavity cooling of an optically levitated submicron particle. Proc. Natl. Acad. Sci. USA 110, 14180–14185 (2013)

    ADS  Google Scholar 

  95. G.H. Koenderink, M. Atakhorrami, F.C. MacKintosh, C.F. Schmidt, High-frequency stress relaxation in semiflexible polymer solutions and networks. Phys. Rev. Lett. 96, 138307 (2006)

    ADS  Google Scholar 

  96. M. Kolobov, C. Fabre, Quantum limits on optical resolution. Phys. Rev. Lett. 85(18), 3789–3792 (2000)

    ADS  Google Scholar 

  97. I. Kominis, Sub-shot-noise magnetometry with a correlated spin-relaxation dominated alkali-metal vapor. Phys. Rev. Lett. 100(7), 073002 (2008)

    ADS  Google Scholar 

  98. I. Kominis, T. Kornack, J. Allred, M. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422(6932), 596–599 (2003)

    ADS  Google Scholar 

  99. J. Kortmann, F. Narberhaus, Bacterial RNA thermometers: molecular zippers and switches. Nat. Rev. Microbiol. 10(4), 255–265 (2012)

    Google Scholar 

  100. M. Koschorreck, M. Napolitano, B. Dubost, M. Mitchell, Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104(9), 093602 (2010)

    ADS  Google Scholar 

  101. D.E. Kuhl, R.Q. Edwards, Image separation radioisotope scanning. Radiology (US) 80 (1963)

    Google Scholar 

  102. P. Kukura, H. Ewers, C. Müller, A. Renn, A. Helenius, V. Sandoghdar, High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923 (2009)

    Google Scholar 

  103. S.C. Kuo, M.P. Sheetz, Force of single kinesin molecules measured with optical tweezers. Science 260(5105), 232–234 (1993)

    ADS  Google Scholar 

  104. V. Kurz, E.M. Nelson, J. Shim, G. Timp, Direct visualization of single-molecule translocations through synthetic nanopores comparable in size to a molecule. ACS Nano 7(5), 4057–4069 (2013)

    Google Scholar 

  105. M.F. Langhorst, J. Schaffer, B. Goetze, Structure brings clarity: structured illumination microscopy in cell biology. Biotechnol. J. 4(6), 858–865 (2009)

    Google Scholar 

  106. J. Lavoie, R. Kaltenbaek, K.J. Resch, Quantum-optical coherence tomography with classical light. Opt. Express 17(5), 3818–3825 (2009)

    ADS  Google Scholar 

  107. D.-I. Lee, T. Goodson, Entangled photon absorption in an organic porphyrin dendrimer. J. Phys. Chem. B 110(51), 25582–25585 (2006)

    Google Scholar 

  108. G.U. Lee, L.A. Chrisey, R.J. Colton, Direct measurement of the forces between complementary strands of DNA. Science 266(5186), 771–773 (1994)

    ADS  Google Scholar 

  109. T. Li, S. Kheifets, D. Medellin, M.G. Raizen, Measurement of the instantaneous velocity of a Brownian particle. Science 328(5986), 1673–1675 (2010)

    ADS  Google Scholar 

  110. T. Li, S. Kheifets, M.G. Raizen, Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)

    Google Scholar 

  111. T. Li, M.G. Raizen, Brownian motion at short time scales. Ann. Phys. 525, 281–295 (2013)

    Google Scholar 

  112. B. Lukić, S. Jeney, C. Tischer, A.J. Kulik, L. Forró, E.-L. Florin, Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005)

    ADS  Google Scholar 

  113. T. Mason, K. Ganesan, J. Van Zanten, D. Wirtz, S. Kuo, Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79(17), 3282–3285 (1997)

    ADS  Google Scholar 

  114. L.I. McCann, M. Dykman, B. Golding, Thermally activated transitions in a bistable three-dimensional optical trap. Nature 402(6763), 785–787 (1999)

    ADS  Google Scholar 

  115. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, R. Schnabel, Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81(1), 013814 (2010)

    ADS  Google Scholar 

  116. J.-C. Meiners, S.R. Quake, Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys. Rev. Lett. 82(10), 2211–2214 (1999)

    ADS  Google Scholar 

  117. J.R. Moffitt, Y.R. Chemla, S.B. Smith, C. Bustamante, Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008)

    Google Scholar 

  118. T. Nagata, R. Okamoto, J. O’Brien, K. Sasaki, S. Takeuchi, Beating the standard quantum limit with four-entangled photons. Science 316(5825), 726–729 (2007)

    ADS  Google Scholar 

  119. M.B. Nasr, B.E.A. Saleh, A.V. Sergienko, M.C. Teich, Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)

    ADS  Google Scholar 

  120. M.B. Nasr, B.E. Saleh, A.V. Sergienko, M.C. Teich, Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt. Express 12(7), 1353–1362 (2004)

    ADS  Google Scholar 

  121. M.B. Nasr, D.P. Goode, N. Nguyen, G. Rong, L. Yang, B.M. Reinhard, B.E. Saleh, M.C. Teich, Quantum optical coherence tomography of a biological sample. Opt. Commun. 282(6), 1154–1159 (2009)

    ADS  Google Scholar 

  122. K.C. Neuman, E.H. Chadd, G.F. Liou, K. Bergman, S.M. Block, Characterization of photodamage to Escherichia coli in optical traps. Biophys. J. 77, 2856–2863 (1999)

    Google Scholar 

  123. T. Nieminen, V. Loke, A. Stilgoe, G. Knöner, A. Brańczyk, N. Heckenberg, H. Rubinsztein-Dunlop, Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt 9(8), S196 (2007)

    ADS  Google Scholar 

  124. T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, Y. Hu, G. Knoener, A.M. Brańczyk, Optical tweezers toolbox 1.3 (2013), http://www.physics.uq.edu.au/people/nieminen/software.html

  125. T. Ono, R. Okamoto, S. Takeuchi, An entanglement-enhanced microscope. Nat. Commun. 4, 2426 (2013)

    ADS  Google Scholar 

  126. A.G. Pakhomov, R. Shevin, J.A. White, J.F. Kolb, O.N. Pakhomova, R.P. Joshi, K.H. Schoenbach, Membrane permeabilization and cell damage by ultrashort electric field shocks. Arch. Biochem. Biophys. 465(1), 109–118 (2007)

    Google Scholar 

  127. A.G. Pakhomov, A.M. Bowman, B.L. Ibey, F.M. Andre, O.N. Pakhomova, K.H. Schoenbach, Lipid nanopores can form a stable, ion channel-like conduction pathway in cell membrane. Biochem. Biophys. Res. Commun. 385(2), 181–186 (2009)

    Google Scholar 

  128. S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    ADS  Google Scholar 

  129. J. Peřina, B.E. Saleh, M.C. Teich et al., Multiphoton absorption cross section and virtual-state spectroscopy for the entangled n-photon state. Phys. Rev. A 57(5), 3972 (1998)

    ADS  Google Scholar 

  130. G. Perkins, R. Jones, Hydrodynamic interaction of a spherical particle with a planar boundary: II. Hard wall. Phys. A 189(3), 447–477 (1992)

    Google Scholar 

  131. E.J. Peterman, F. Gittes, C.F. Schmidt, Laser-induced heating in optical traps. Biophys. J. 84(2), 1308–1316 (2003)

    ADS  Google Scholar 

  132. E.J. Peterman, M.A. van Dijk, L.C. Kapitein, C.F. Schmidt, Extending the bandwidth of optical-tweezers interferometry. Rev. Sci. Instrum. 74(7), 3246–3249 (2003)

    ADS  Google Scholar 

  133. M.E. Phelps, Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 97(16), 9226–9233 (2000)

    ADS  Google Scholar 

  134. D. Preece, R. Warren, R. Evans, G.M. Gibson, M.J. Padgett, J.M. Cooper, M. Tassieri, Optical tweezers: wideband microrheology. J. Opt. 13(4), 044022 (2011)

    ADS  Google Scholar 

  135. S. Rankowitz, J. Robertson, W. Higinbotham, M. Rosenblum, Positron scanner for locating brain tumors. Technical report, Brookhaven National Lab., (BNL) Upton, NY (1961)

    Google Scholar 

  136. A. Rohrbach, E. Stelzer, Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl. Opt. 41(13), 2494–2507 (2002)

    ADS  Google Scholar 

  137. O. Roslyak, C.A. Marx, S. Mukamel, Nonlinear spectroscopy with entangled photons: manipulating quantum pathways of matter. Phys. Rev. A 79(3), 033832 (2009)

    ADS  Google Scholar 

  138. M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)

    Google Scholar 

  139. B.E. Saleh, B.M. Jost, H.-B. Fei, M.C. Teich, Entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 80(16), 3483 (1998)

    ADS  Google Scholar 

  140. M.J. Sanderson, A. Charles, E.R. Dirksen, Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1(8), 585–596 (1990)

    Google Scholar 

  141. I. Savukov, V. Zotev, P. Volegov, M. Espy, A. Matlashov, J. Gomez, R. Kraus Jr, MRI with an atomic magnetometer suitable for practical imaging applications. J. Magn. Res. 199(2), 188–191 (2009)

    ADS  Google Scholar 

  142. R. Schmidt, C.A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, S.W. Hell, Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5(6), 539–544 (2008)

    Google Scholar 

  143. J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999)

    Google Scholar 

  144. M. Schubert, The attributes of nonclassical light and their mutual relationship. Ann. Phys. 499(1), 53–60 (1987)

    Google Scholar 

  145. O. Schwartz, D. Oron, Improved resolution in fluorescence microscopy using quantum correlations. Phys. Rev. A 85(3), 33812 (2012)

    ADS  Google Scholar 

  146. O. Schwartz, J.M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, D. Oron, Superresolution microscopy with quantum emitters. Nano Lett. 13(12), 5832–5836 (2013)

    ADS  Google Scholar 

  147. C. Selhuber-Unkel, P. Yde, K. Berg-Sørensen, L.B. Oddershede, Variety in intracellular diffusion during the cell cycle. Phys. Biol. 6(2), 025015 (2009)

    Google Scholar 

  148. E.N. Senning, A.H. Marcus, Actin polymerization driven mitochondrial transport in mating S. cerevisiae. Proc. Natl. Acad. Sci. USA 107, 721–725 (2010)

    ADS  Google Scholar 

  149. R. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, M. Mitchell, Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109(25), 253605 (2012)

    ADS  Google Scholar 

  150. V. Shah, G. Vasilakis, M. Romalis, High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. Phys. Rev. Lett. 104(1), 013601 (2010)

    ADS  Google Scholar 

  151. D. Sheng, S. Li, N. Dural, M. Romalis, Subfemtotesla scalar atomic magnetometry using multipass cells. Phys. Rev. Lett. 110(16), 160802 (2013)

    ADS  Google Scholar 

  152. H. Shroff, C.G. Galbraith, J.A. Galbraith, E. Betzig, Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5(5), 417–423 (2008)

    Google Scholar 

  153. R. Slusher, Quantum optics in the 80’s. Opt. Photonics News 1(12), 27–30 (1990)

    ADS  Google Scholar 

  154. R. Slusher, A. Porta, B. Yurke, P. Grangier, Squeezed states, interferometric limits and back-action evasion, in Frequency Standards and Metrology, ed. by A. Marchi (Springer, Berlin Heidelberg, 1989), pp. 343–348

    Google Scholar 

  155. S.B. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250), 795–799 (1996)

    ADS  Google Scholar 

  156. M. Stefszky, C. Mow-Lowry, S. Chua, D. Shaddock, B. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. Lam, D. McClelland, Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quant. Grav. 29(14), 145015 (2012)

    ADS  Google Scholar 

  157. O. Stiehl, K. Weidner-Hertrampf, M. Weiss, Kinetics of conformational fluctuations in dna hairpin-loops in crowded fluids. New J. Phys. 15(11), 113010 (2013)

    ADS  Google Scholar 

  158. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721 (1993)

    ADS  Google Scholar 

  159. I. Tasaki, T. Nakaye, Heat generated by the dark-adapted squid retina in response to light pulses. Science 227(4687), 654–655 (1985)

    ADS  Google Scholar 

  160. I. Tasaki, A. Watanabe, R. Sandlin, L. Carnay, Changes in fluorescence, turbidity, and birefringence associated with nerve excitation. Proc. Natl. Acad. Sci. USA 61(3), 883 (1968)

    ADS  Google Scholar 

  161. I. Tasaki, K. Kusano, P. Byrne, Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J. 55(6), 1033–1040 (1989)

    ADS  Google Scholar 

  162. M. Tassieri, G.M. Gibson, R. Evans, A.M. Yao, R. Warren, M.J. Padgett, J.M. Cooper, Measuring storage and loss moduli using optical tweezers: Broadband microrheology. Phys. Rev. E 81, 026308 (2010)

    ADS  Google Scholar 

  163. M.A. Taylor, W.P. Bowen, Quantum noise in optical tweezers. J. Phys.: Conf. Ser. 467, 012007 (2013)

    ADS  Google Scholar 

  164. M.A. Taylor, W.P. Bowen, Quantum metrology and its application in biology. arXiv:1409.0950, 2014

  165. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Biological measurement beyond the quantum limit. Nat. Photon. 7, 229–233 (2013)

    ADS  Google Scholar 

  166. M.A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, W.P. Bowen, Subdiffraction-limited quantum imaging within a living cell. Phys. Rev. X 4(1), 011017 (2014)

    Google Scholar 

  167. M.C. Teich, B.E. Saleh, Squeezed and antibunched light. Phys. Today 43, 26–34 (1990)

    Google Scholar 

  168. M.C. Teich, B.E. Saleh, Entangled-photon microscopy. Česk. Čas. Fyz. 47, 3–8 (1997)

    Google Scholar 

  169. M.C. Teich, B.E. Saleh, F.N. Wong, J.H. Shapiro, Variations on the theme of quantum optical coherence tomography: a review. Quantum Inf. Process. 11(4), 903–923 (2012)

    MATH  Google Scholar 

  170. I.M. Tolić-Nørrelykke, E.-L. Munteanu, G. Thon, L. Oddershede, K. Berg-Sørensen, Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93, 078102 (2004)

    Google Scholar 

  171. N. Treps, U. Andersen, B. Buchler, P.K. Lam, A. Maître, H.-A. Bachor, C. Fabre, Surpassing the standard quantum limit for optical imaging using nonclassical multimode light. Phys. Rev. Lett. 88, 203601 (2002)

    ADS  Google Scholar 

  172. N. Treps, N. Grosse, W.P. Bowen, C. Fabre, H.-A. Bachor, P.K. Lam, A quantum laser pointer. Science 301, 940–943 (2003)

    ADS  Google Scholar 

  173. Y. Tseng, J. Lee, T. Kole, I. Jiang, D. Wirtz, Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking. J. Cell Sci. 117(10), 2159–2167 (2004)

    Google Scholar 

  174. F. Uhlmann, Open questions: chromosome condensation-why does a chromosome look like a chromosome. BMC Biol. 11(9), 9 (2013)

    MathSciNet  Google Scholar 

  175. L. Upton, M.R. Harpham, O. Suzer, M. Richter, S. Mukamel, T.G. Goodson III, Optically excited entangled states in organic molecules illuminate the dark. J. Phys. Chem. Lett. 4, 2046–2052 (2013)

    Google Scholar 

  176. V. Vijayan, R. Zuzow, E.K. O’Shea, Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA 106(52), 22564–22568 (2009)

    ADS  Google Scholar 

  177. G. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys. Rev. Lett. 89(5), 050601 (2002)

    ADS  Google Scholar 

  178. M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers. Biophys. J. 72(3), 1335–1346 (1997)

    ADS  Google Scholar 

  179. W. Wasilewski, K. Jensen, H. Krauter, J.J. Renema, M. Balabas, E.S. Polzik, Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104(13), 133601 (2010)

    ADS  Google Scholar 

  180. K. Watanabe, Y. Ishida, Y. Yamamoto, H. Haus, Y. Lai, Femtosecond squeezed-vacuum-state generation in mode-locked soliton lasers. Phys. Rev. A 42(9), 5667–5674 (1990)

    ADS  Google Scholar 

  181. M. Weiss, M. Elsner, F. Kartberg, T. Nilsson, Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87(5), 3518–3524 (2004)

    ADS  Google Scholar 

  182. J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Technol. 7(1), 1–9 (2001)

    Google Scholar 

  183. K.I. Willig, R.R. Kellner, R. Medda, B. Hein, S. Jakobs, S.W. Hell, Nanoscale resolution in GFP-based microscopy. Nat. Methods 3(9), 721–723 (2006)

    Google Scholar 

  184. F. Wolfgramm, A. Cerè, F.A. Beduini, A. Predojević, M. Koschorreck, M.W. Mitchell, Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)

    ADS  Google Scholar 

  185. F. Wolfgramm, C. Vitelli, F.A. Beduini, N. Godbout, M.W. Mitchell, Entanglement-enhanced probing of a delicate material system. Nat. Photon. 7, 28–32 (2013)

    ADS  Google Scholar 

  186. H. Xia, A. Ben-Amar, Baranga, D. Hoffman, M. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89(21), 211104 (2006)

    Google Scholar 

  187. S. Yamada, D. Wirtz, S.C. Kuo, Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78, 1736–1747 (2000)

    Google Scholar 

  188. A. Yao, M. Tassieri, M. Padgett, J. Cooper, Microrheology with optical tweezers. Lab Chip 9(17), 2568–2575 (2009)

    Google Scholar 

  189. Z. Zhai, J. Gao, Low-frequency phase measurement with high-frequency squeezing. Opt. Express 20(16), 18173–18179 (2012)

    ADS  Google Scholar 

  190. F. Zhang, V. Gradinaru, A. Adamantidis, R. Durand, R. Airan, L. De Lecea, K. Deisseroth, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5(3), 439–456 (2010)

    Google Scholar 

  191. R. Zwanzig, M. Bixon, Compressibility effects in the hydrodynamic theory of Brownian motion. J. Fluid Mech. 69(part 1), 21–25 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Taylor, M. (2015). Introduction. In: Quantum Microscopy of Biological Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-18938-3_1

Download citation

Publish with us

Policies and ethics