Renormalization Beyond the Decoupling Limit of Massive Gravity
Chapter
First Online:
- 399 Downloads
Abstract
In this chapter we study the naturalness of the graviton mass and whether or not the specific structure of the graviton gets detuned in the full theory beyond the decoupling limit, and compare our conclusions to the estimations coming from the decoupling limit analysis. More concrete, we will address the two essential questions.
Keywords
Decoupling Limit Massive Gravity Graviton Mass Vainshtein Mechanism Graviton Loops
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Berezhiani L, Chkareuli G, de Rham C, Gabadadze G, Tolley AJ (2012) On black holes in massive gravity. Phys Rev D 85:044024ADSCrossRefGoogle Scholar
- Buchbinder IL, de Berredo-Peixoto G, Shapiro IL (2007) Quantum effects in softly broken gauge theories in curved space-times. Phys Lett B 649:454–462. doi: 10.1016/j.physletb.2007.04.039
- Buchbinder IL, Pereira DD, Shapiro IL (2012) One-loop divergences in massive gravity theory. Phys Lett B 712:104–108. doi: 10.1016/j.physletb.2012.04.045
- Chamseddine AH, Mukhanov V (2011) Massive gravity simplified: a quadratic action. JHEP 1108:091MathSciNetADSCrossRefGoogle Scholar
- de Rham C, Gabadadze G (2010) Generalization of the Fierz-Pauli action. Phys Rev D 82:044020. doi: 10.1103/PhysRevD.82.044020
- de Rham C, Gabadadze G, Heisenberg L, Pirtskhalava D (2012) Non-renormalization and naturalness in a class of scalar-tensor theories. Phys Rev D 87:085017Google Scholar
- de Rham C, Gabadadze G, Tolley AJ (2011a) Helicity decomposition of ghost-free massive gravity. JHEP 1111:093. doi: 10.1007/JHEP11(2011)093
- de Rham C, Gabadadze G, Tolley AJ (2011b) Resummation of massive gravity. Phys Rev Lett 106:231101. doi: 10.1103/PhysRevLett.106.231101
- de Rham C, Heisenberg L, Ribeiro RH Quantum corrections in massive gravity at higher loop: mixing matter with gravitons (to appear)Google Scholar
- Deffayet C, Jacobson T (2012) On horizon structure of bimetric spacetimes. Class Quant Grav 29:065009. doi: 10.1088/0264-9381/29/6/065009
- Deffayet C, Mourad J, Zahariade G (2013) A note on ‘symmetric’ vielbeins in bimetric, massive, perturbative and non perturbative gravities. JHEP 1303:086Google Scholar
- Fasiello M, Tolley AJ (2013) Cosmological stability bound in massive gravity and bigravity. JCAP 1301:032Google Scholar
- Fierz M, Pauli W (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc Roy Soc Lond A 173:211–232MathSciNetADSCrossRefGoogle Scholar
- Gabadadze G, Hinterbichler K, Pirtskhalava D, Shang Y (2013) On the potential for general relativity and its geometry. Phys Rev D 88:084003Google Scholar
- Groot SN, Marco P, Matthew S (2007) Nonlinear properties of vielbein massive gravity. Eur Phys J C 51:741–752Google Scholar
- Hassan SF, Rosen RA (2011) On non-linear actions for massive gravity. JHEP 1107:009. doi: 10.1007/JHEP07(2011)009
- Hassan SF, Rosen RA (2012a) Bimetric gravity from ghost-free massive gravity. JHEP 1202:126. doi: 10.1007/JHEP02(2012)126
- Hassan SF, Rosen RA (2012b) Resolving the ghost problem in non-linear massive gravity. Phys Rev Lett 108:041101. 10.1103/PhysRevLett.108.041101
- Hinterbichler K, Rosen RA (2012) Interacting Spin-2 fields. JHEP 1207:047. doi: 10.1007/JHEP07(2012)047
- Koyama K, Niz G, Tasinato G (2011a) Analytic solutions in non-linear massive gravity. Phys Rev Lett 107:131101. doi: 10.1103/PhysRevLett.107.131101
- Koyama K, Niz G, Tasinato G (2011b) Strong interactions and exact solutions in non-linear massive gravity. Phys Rev D 84:064033. doi: 10.1103/PhysRevD.84.064033
- Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. JHEP 0406:059. doi: 10.1088/1126-6708/2004/06/059
- Ondo NA, Tolley AJ (2013) Complete decoupling limit of ghost-free massive gravity. JHEP 1311: 059Google Scholar
- Park M (2011) Quantum aspects of massive gravity. Class Quant Grav 28:105012ADSCrossRefGoogle Scholar
- ’t Hooft G, Veltman MJG (1974) One loop divergencies in the theory of gravitation. Ann Poincare Phys Theory A20:69–94Google Scholar
- Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39:393–394. doi: 10.1016/0370-2693(72)90147-5
- van Dam H, Veltman MJG (1970) Massive and massless Yang-Mills and gravitational fields. Nucl Phys B 22:397–411ADSCrossRefGoogle Scholar
- Zakharov VI (1970) Linearized gravitation theory and the graviton mass. JETP Lett 12:312ADSGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2015