Quantum Corrections: Natural Versus Non-natural

  • Lavinia HeisenbergEmail author
Part of the Springer Theses book series (Springer Theses)


Similar puzzles are also encountered within the Standard Model of particle physics, for example the Higgs Hierarchy problem of why the Higgs mass is so small relative to the Planck scale. These hierarchies are puzzling as they do not seem to be protected without the help of new physics, such as supersymmetry.


Quantum Correction Massive Gravity Effective Field Theory External Particle Graviton Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arkani-Hamed N, Georgi H, Schwartz MD (2003) Effective field theory for massive gravitons and gravity in theory space. Annals Phys 305:96–118. doi: 10.1016/S0003-4916(03)00068-X
  2. Babichev E, Deffayet C, Ziour R (2010) The recovery of general relativity in massive gravity via the vainshtein mechanism. Phys Rev D 82:104008. doi: 10.1103/PhysRevD.82.104008
  3. Buchbinder IL, Pereira DD, Shapiro IL (2012) One-loop divergences in massive gravity theory. Phys Lett B 712:104–108. doi: 10.1016/j.physletb.2012.04.045
  4. Chkareuli G, Pirtskhalava D (2012) Vainshtein mechanism In \(\Lambda _3\) - theories. Phys Lett B 713:99–103. doi: 10.1016/j.physletb.2012.05.030
  5. de Rham C, Gabadadze G (2010) Generalization of the fierz-pauli action. Phys Rev D 82:044020. doi: 10.1103/PhysRevD.82.044020
  6. de Rham C, Gabadadze G, Heisenberg L, Pirtskhalava D (2012) Non-renormalization and naturalness in a class of scalar-tensor theories. Phys Rev D 87Google Scholar
  7. de Rham C, Gabadadze G, Tolley AJ (2011) Resummation of massive gravity. Phys Rev Lett 106:231101. doi: 10.1103/PhysRevLett.106.231101
  8. ’t Hooft G (1980) Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Adv Study Inst Ser B Phys 59:135Google Scholar
  9. ’t Hooft G, Veltman MJG (1974) One loop divergencies in the theory of gravitation. Annales Poincare Phys Theor A20:69–94Google Scholar
  10. Koyama K, Niz G, Tasinato G (2011a) Analytic solutions in non-linear massive gravity. Phys Rev Lett 107:131101. doi: 10.1103/PhysRevLett.107.131101
  11. Koyama K, Niz G, Tasinato G (2011b) Strong interactions and exact solutions in non-linear massive gravity. Phys Rev D 84:064033. doi: 10.1103/PhysRevD.84.064033
  12. Luty MA, Porrati M, Rattazzi R (2003) Strong interactions and stability in the DGP model. JHEP 0309:029MathSciNetADSCrossRefGoogle Scholar
  13. Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. JHEP 0406:059. doi: 10.1088/1126-6708/2004/06/059
  14. Nicolis A, Rattazzi R, Trincherini E (2009) The Galileon as a local modification of gravity. Phys Rev D 79:064036. doi: 10.1103/PhysRevD.79.064036
  15. Sbisa F, Niz G, Koyama K, Tasinato G (2012) Characterising vainshtein solutions in massive gravity. Phys Rev D 86:024033. doi: 10.1103/PhysRevD.86.024033
  16. Vainshtein AI, Khriplovich IB (1971) On the zero-mass limit and renormalizability in the theory of massive yang-mills field. Yad Fiz 13:198–211Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Royal Institute of TechnologyStockholmSweden

Personalised recommendations