Advertisement

Cosmology of Massive Gravity in the Decoupling Limit

  • Lavinia HeisenbergEmail author
Chapter
  • 404 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter we will aim the ambitious task of addressing the burdensome problems of cosmology using the framework of massive gravity. More concrete, we will try to answer the questions of whether or not massive gravity can produce a theoretically reliable self-accelerated geometry and whether or not it can also resolve the cosmological constant problem.

Keywords

Cosmological Constant Vacuum Energy Massive Gravity Massive Graviton Cosmological Constant Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Afshordi N, Geshnizjani G, Khoury J (2009) Do observations offer evidence for cosmological-scale extra dimensions? JCAP 0908:030. doi: 10.1088/1475-7516/2009/08/030 ADSCrossRefGoogle Scholar
  2. D’Amico G, Gabadadze G, Hui L, Pirtskhalava D (2013) Quasidilaton: theory and cosmology. Phys Rev D 87:064037. doi: 10.1103/PhysRevD.87.064037. http://link.aps.org/doi/10.1103/PhysRevD.87.064037
  3. Arkani-Hamed N, Dimopoulos S, Dvali G, Gabadadze G (2002) Nonlocal modification of gravity and the cosmological constant problemGoogle Scholar
  4. Berkhahn F, Dietrich DD, Hofmann S (2010) Self-protection of massive cosmological gravitons. JCAP 1011:018. doi: 10.1088/1475-7516/2010/11/018 ADSCrossRefGoogle Scholar
  5. Burrage C, Seery D (2010) Revisiting fifth forces in the Galileon model. JCAP 1008:011. doi: 10.1088/1475-7516/2010/08/011 ADSCrossRefGoogle Scholar
  6. Chan KC, Scoccimarro R (2009) Large-scale structure in brane-induced gravity II. Numerical simulations. Phys Rev D 80:104005. doi: 10.1103/PhysRevD.80.104005
  7. D’Amico G, de Rham C, Dubovsky S, Gabadadze G, Pirtskhalava D, Tolley AJ (2011) Massive cosmologies. Phys Rev D 84:124046. doi: 10.1103/PhysRevD.84.124046. http://link.aps.org/doi/10.1103/PhysRevD.84.124046
  8. de Rham C (2010) Massive gravity from Dirichlet boundary conditions. Phys Lett B 688:137–141Google Scholar
  9. de Rham C, Dvali G, Hofmann S, Khoury J, Pujolas O et al (2008) Cascading gravity: extending the Dvali-Gabadadze-Porrati model to higher dimension. Phys Rev Lett 100:251603. doi: 10.1103/PhysRevLett.100.251603
  10. de Rham C, Khoury J, Tolley AJ (2009) Flat 3-brane with tension in cascading gravity. Phys Rev Lett 103:161601. doi: 10.1103/PhysRevLett.103.161601
  11. de Rham C, Gabadadze G (2010) Generalization of the fierz-pauli action. Phys Rev D 82:044020. doi: 10.1103/PhysRevD.82.044020
  12. Deffayet C, Dvali GR, Gabadadze G, Vainshtein AI (2002) Nonperturbative continuity in graviton mass versus perturbative discontinuity. Phys Rev D 65:044026. doi: 10.1103/PhysRevD.65.044026
  13. Dvali G, Gruzinov A, Zaldarriaga M (2003) The accelerated universe and the moon. Phys Rev D 68:024012. doi: 10.1103/PhysRevD.68.024012
  14. Dvali G, Hofmann S, Khoury J (2007) Degravitation of the cosmological constant and graviton width. Phys Rev D 76:084006. doi: 10.1103/PhysRevD.76.084006 MathSciNetADSCrossRefGoogle Scholar
  15. Dvali G, Gabadadze G, Shifman M (2002) Diluting cosmological constant via large distance modification of gravity. pp 566–581Google Scholar
  16. Dvali G, Gabadadze G, Shifman M (2003) Diluting cosmological constant in infinite volume extra dimensions. Phys Rev D 67:044020. doi: 10.1103/PhysRevD.67.044020
  17. Fasiello M, Tolley AJ (2013) Cosmological stability bound in massive gravity and bigravityGoogle Scholar
  18. Fasiello M, Tolley AJ (2012) Cosmological perturbations in massive gravity and the Higuchi bound. JCAP 1211:035. doi: 10.1088/1475-7516/2012/11/035 ADSCrossRefGoogle Scholar
  19. Grisa L, Sorbo L (2010) Pauli-Fierz gravitons on Friedmann-Robertson-Walker background. Phys Lett B 686:273–278. doi: 10.1016/j.physletb.2010.02.072 MathSciNetADSCrossRefGoogle Scholar
  20. Gumrukcuoglu AE, Lin C, Mukohyama S (2011) Open FRW universes and self-acceleration from nonlinear massive gravity. JCAP 1111:030. doi: 10.1088/1475-7516/2011/11/030
  21. Huang Q-G, Piao Y-S, Zhou S-Y (2012) Mass-varying massive gravity. Phys Rev D 86:124014. doi: 10.1103/PhysRevD.86.124014 ADSCrossRefGoogle Scholar
  22. Lue A, Scoccimarro R, Starkman GD (2004) Probing Newton’s constant on vast scales: DGP gravity, cosmic acceleration and large scale structure. Phys Rev D 69:124015. doi: 10.1103/PhysRevD.69.124015 ADSCrossRefGoogle Scholar
  23. Lue A, Starkman G (2003) Gravitational leakage into extra dimensions: probing dark energy using local gravity. Phys Rev D 67:064002. doi: 10.1103/PhysRevD.67.064002 ADSCrossRefGoogle Scholar
  24. Nicolis A, Rattazzi R, Trincherini E (2009) The Galileon as a local modification of gravity. Phys Rev D 79:064036. doi: 10.1103/PhysRevD.79.064036 MathSciNetADSCrossRefGoogle Scholar
  25. Nicolis A, Rattazzi R (2004) Classical and quantum consistency of the DGP model. JHEP 0406:059. doi: 10.1088/1126-6708/2004/06/059 MathSciNetADSCrossRefGoogle Scholar
  26. Scoccimarro R (2009) Large-scale structure in brane-induced gravity I. Perturbation Theory Phys Rev D 80:104006. doi: 10.1103/PhysRevD.80.104006 CrossRefGoogle Scholar
  27. Steven W (1989) The cosmological constant problem. Rev Mod Phys 61:1–23zbMATHCrossRefGoogle Scholar
  28. Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39:393–394. doi: 10.1016/0370-2693(72)90147-5 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Royal Institute of TechnologyStockholmSweden

Personalised recommendations