Advertisement

Introduction

  • Lavinia HeisenbergEmail author
Chapter
  • 408 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Physics studies Nature, its matter content and its evolution modeled by the laws of physics.

Keywords

Lovelock Invariants Vainshtein Mechanism Galileon Theory Effective Field Theory Boulware-Deser Ghost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arkani-Hamed N, Dimopoulos S, Dvali G, Gabadadze G (2002) Nonlocal modification of gravity and the cosmological constant problemGoogle Scholar
  2. Arkani-Hamed N, Georgi H, Schwartz MD (2003) Effective field theory for massive gravitons and gravity in theory space. Ann Phys 305:96–118. doi: 10.1016/S0003-4916(03)00068-X
  3. Babichev E, Deffayet C, Ziour R (2009) K-Mouflage gravity. Int J Mod Phys D18:2147–2154. doi: 10.1142/S0218271809016107
  4. Bergshoeff EA, Hohm O, Townsend PK (2009) Massive gravity in three dimensions. Phys Rev Lett 102:201301. doi: 10.1103/PhysRevLett.102.201301 MathSciNetADSCrossRefGoogle Scholar
  5. Boehmer CG, Harko T (2007) Dark energy as a massive vector field. Eur Phys J C 50:423–429. doi: 10.1140/epjc/s10052-007-0210-1
  6. Burgess CP (2007) Introduction to effective field theory. Ann Rev Nucl Part Sci 57:329–362. doi: 10.1146/annurev.nucl.56.080805.140508
  7. Burrage C, de Rham C, Heisenberg L (2011) de Sitter Galileon. JCAP 1105:025. doi: 10.1088/1475-7516/2011/05/025
  8. Burrage C, de Rham C, Seery D, Tolley AJ (2011) Galileon inflation. JCAP 1101:014. doi: 10.1088/1475-7516/2011/01/014
  9. Chkareuli G, Pirtskhalava D (2012) Vainshtein mechanism in \(\Lambda _3\)—theories. Phys Lett B 713:99–103. doi: 10.1016/j.physletb.2012.05.030 ADSCrossRefGoogle Scholar
  10. Chow N, Khoury J (2009) Galileon cosmology. Phys Rev D 80:024037. doi: 10.1103/PhysRevD.80.024037 ADSCrossRefGoogle Scholar
  11. Christos C, Ruth G, Nemanja K, Antonio P (2006) DGP Specteroscopy. JHEP 0610:066. doi: 10.1088/1126-6708/2006/10/066
  12. Creminelli P, Nicolis A, Trincherini E (2010) Galilean genesis: an alternative to inflation. JCAP 1011:021. doi: 10.1088/1475-7516/2010/11/021 ADSCrossRefGoogle Scholar
  13. Davis SC (2003) Generalized Israel junction conditions for a Gauss-Bonnet brane world. Phys Rev D 67:024030. doi: 10.1103/PhysRevD.67.024030
  14. de Fromont P, de Rham C, Heisenberg L, Matas A (2013) Superluminality in the Bi- and Multi-Galileon. JHEP 1307:067. doi: 10.1007/JHEP07(2013)067
  15. de Rham C (2010) Massive gravity from Dirichlet boundary conditions. Phys Lett B 688:137–141MathSciNetADSCrossRefGoogle Scholar
  16. de Rham C, Dvali G, Hofmann S, Khoury J, Pujolas O et al (2008) Cascading gravity: extending the Dvali-Gabadadze-Porrati model to higher dimension. Phys Rev Lett 100:251603. doi: 10.1103/PhysRevLett.100.251603
  17. de Rham C, Gabadadze G (2010a) Selftuned massive spin-2. Phys Lett B 693:334–338. doi: 10.1016/j.physletb.2010.08.043
  18. de Rham C, Gabadadze G (2010b) Generalization of the Fierz-Pauli action. Phys Rev D 82:044020. doi: 10.1103/PhysRevD.82.044020
  19. de Rham C, Gabadadze G, Heisenberg L, Pirtskhalava D (2011) Cosmic acceleration and the helicity-0 graviton. Phys Rev D 83:103516. doi: 10.1103/PhysRevD.83.103516
  20. de Rham C, Gabadadze G, Heisenberg L, Pirtskhalava D (2012) Non-renormalization and naturalness in a class of scalar-tensor theories. Phys Rev D 87:085017Google Scholar
  21. de Rham C, Gabadadze G, Pirtskhalava D, Tolley AJ, Yavin I (2011) Nonlinear dynamics of 3D massive gravity. JHEP 1106:028. doi: 10.1007/JHEP06(2011)028
  22. de Rham C, Gabadadze G, Tolley AJ (2011) Resummation of massive gravity. Phys Rev Lett 106:231101. doi: 10.1103/PhysRevLett.106.231101
  23. de Rham C, Heisenberg L (2011) Cosmology of the galileon from massive gravity. Phys Rev D 84:043503. doi: 10.1103/PhysRevD.84.043503
  24. de Rham C, Heisenberg L, Ribeiro RH (2015) Quantum corrections in massive gravity at higher loop: mixing matter with gravitons to appearGoogle Scholar
  25. de Rham C, Tolley AJ (2006) Mimicking Lambda with a spin-two ghost condensate. JCAP 0607:004. doi: 10.1088/1475-7516/2006/07/004 CrossRefGoogle Scholar
  26. de Rham C, Tolley A (2010) DBI and the Galileon reunited. JCAP 1005:015. doi: 10.1088/1475-7516/2010/05/015 CrossRefGoogle Scholar
  27. Deffayet C, Dvali GR, Gabadadze G (2002) Accelerated universe from gravity leaking to extra dimensions. Phys Rev D 65: 044023. doi: 10.1103/PhysRevD.65.044023
  28. Deffayet C, Dvali GR, Gabadadze G, Vainshtein AI (2002) Nonperturbative continuity in graviton mass versus perturbative discontinuity. Phys Rev D 65:044026. doi: 10.1103/PhysRevD.65.044026
  29. Deffayet C, Esposito-Farese G, Vikman A (2009) Covariant galileon. Phys Rev D 79:084003. doi: 10.1103/PhysRevD.79.084003
  30. Deffayet C, Pujolas O, Sawicki I, Vikman A (2010) Imperfect dark energy from kinetic gravity braiding. JCAP 1010:026. doi: 10.1088/1475-7516/2010/10/026
  31. Doran M, Lilley MJ, Schwindt J, Wetterich C (2001) Quintessence and the separation of CMB peaks. Astrophys J 559:501–506. doi: 10.1086/322253 ADSCrossRefGoogle Scholar
  32. Dvali GR, Gabadadze G, Porrati M (2000) 4-D gravity on a brane in 5-D Minkowski space. Phys Lett B485:208–214. doi: 10.1016/S0370-2693(00)00669-9
  33. Dvali G, Gabadadze G, Shifman M (2002) Diluting cosmological constant via large distance modification of gravity. World Scientific, Singapore, pp 566–581Google Scholar
  34. Dvali G, Gabadadze G, Shifman M (2003) Diluting cosmological constant in infinite volume extra dimensions. Phys Rev D 67:044020. doi: 10.1103/PhysRevD.67.044020
  35. Dvali G, Hofmann S, Khoury J (2007) Degravitation of the cosmological constant and graviton width. Phys Rev D 76:084006. doi: 10.1103/PhysRevD.76.084006
  36. Fairlie D (2011) Comments on galileons. J Phys A44:305201. doi: 10.1088/1751-8113/44/30/305201
  37. Fairlie DB, Govaerts J, Morozov A (1992) Universal field equations with covariant solutions. Nucl Phys B 373:214–232. doi: 10.1016/0550-3213(92)90455-K
  38. Fasiello M, Tolley AJ (2013) Cosmological stability bound in massive gravity and bigravityGoogle Scholar
  39. Fierz M, Pauli W (1939) On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc Roy Soc Lond A173:211–232MathSciNetADSCrossRefGoogle Scholar
  40. Gabadadze G (2009) General relativity with an auxiliary dimension. Phys Lett B 681:89–95MathSciNetADSCrossRefGoogle Scholar
  41. Gabadadze G, Shifman M (2004) Softly massive gravity. Phys Rev D 69:124032. doi: 10.1103/PhysRevD.69.124032
  42. Golovnev A, Mukhanov V, Vanchurin V (2008) Vector inflation. JCAP 0806:009. doi: 10.1088/1475-7516/2008/06/009
  43. Goon G, Hinterbichler K, Trodden M (2011) Symmetries for Galileons and DBI scalars on curved space. JCAP 1107:017. doi: 10.1088/1475-7516/2011/07/017
  44. Hassan SF, Rosen RA (2011) On non-linear actions for massive gravity. JHEP 1107:009. doi: 10.1007/JHEP07(2011)009
  45. Hassan SF, Rosen RA (2012) Bimetric gravity from ghost-free massive gravity. JHEP 1202:126. doi: 10.1007/JHEP02(2012)126
  46. Hassan SF, Schmidt-May A, von Strauss M (2012) Metric formulation of ghost-free multivielbein theoryGoogle Scholar
  47. Hinterbichler K, Nicolis A, Porrati M (2009) Superluminality in DGP. JHEP 0909:089. doi: 10.1088/1126-6708/2009/09/089 ADSCrossRefGoogle Scholar
  48. Hinterbichler K, Khoury J (2010) Symmetron fields: screening long-range forces through local symmetry restoration. Phys Rev Lett 104:231301. doi: 10.1103/PhysRevLett.104.231301
  49. Hinterbichler K, Khoury J (2012) The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry. JCAP 1204:023. doi: 10.1088/1475-7516/2012/04/023 ADSCrossRefGoogle Scholar
  50. Hinterbichler K, Rosen RA (2012) Interacting spin-2 fields. JHEP 1207:047. doi: 10.1007/JHEP07(2012)047
  51. Jiménez JB, Durrer R, Heisenberg L, Thorsrud M (2013) Stability of Horndeski vector-tensor interactions. JCAP 1310:064. doi: 10.1088/1475-7516/2013/10/064
  52. Jimenez JB, Froes ALD, Mota DF (2013) Screening vector field modifications of general relativity. Phys Lett B 725:212–217. doi: 10.1016/j.physletb.2013.07.032
  53. Khoury J, Weltman A (2004) Chameleon cosmology. Phys Rev D 69:044026. doi: 10.1103/PhysRevD.69.044026
  54. Khoury J, Wyman M (2009) N-body simulations of DGP and degravitation theories. Phys Rev D 80:064023. doi: 10.1103/PhysRevD.80.064023 ADSCrossRefGoogle Scholar
  55. Koyama K (2005) Are there ghosts in the self-accelerating brane universe? Phys Rev D 72:123511. doi: 10.1103/PhysRevD.72.123511 ADSCrossRefGoogle Scholar
  56. Koyama K, Niz G, Tasinato G (2011) Analytic solutions in non-linear massive gravity. Phys Rev Lett 107:131101. doi: 10.1103/PhysRevLett.107.131101
  57. Luty MA, Porrati M, Rattazzi R (2003) Strong interactions and stability in the DGP model. JHEP 0309:029MathSciNetADSCrossRefGoogle Scholar
  58. Mizuno S, Koyama K (2010) Primordial non-Gaussianity from the DBI Galileons. Phys Rev D 82(103518). doi: 10.1103/PhysRevD.82.103518
  59. Nicolis A, Rattazzi R, Trincherini E (2009) The Galileon as a local modification of gravity. Phys Rev D 79:064036. doi: 10.1103/PhysRevD.79.064036 MathSciNetADSCrossRefGoogle Scholar
  60. Ondo NA, Tolley AJ (2013) Complete decoupling limit of ghost-free massive gravityGoogle Scholar
  61. Peebles PJE, Ratra B (2003) The cosmological constant and dark energy. Rev Mod Phys 75:559–606. doi: 10.1103/RevModPhys.75.559
  62. Scherer S (2003) Introduction to chiral perturbation theory. Adv Nucl Phys 27:277Google Scholar
  63. Siegel W (1986) 16/16 SUPERGRAVITY. Class Quant Grav 3:L47–L48. doi: 10.1088/0264-9381/3/2/008
  64. Silva FP, Koyama K (2009) Self-accelerating universe in galileon cosmology. Phys Rev D 80:121301. doi: 10.1103/PhysRevD.80.121301
  65. Turner MS, Widrow LM (1988) Inflation-produced, large-scale magnetic fields. Phys Rev D 37: 2743–2754. doi: 10.1103/PhysRevD.37.2743. http://link.aps.org/doi/10.1103/PhysRevD.37.2743
  66. Vainshtein AI (1972) To the problem of nonvanishing gravitation mass. Phys Lett B 39:393–394. doi: 10.1016/0370-2693(72)90147-5 ADSCrossRefGoogle Scholar
  67. Weinberg S (2005) The quantum theory of fields, vol 1: Foundations. Cambridge University Press, Cambridge. ISBN 0521670535. http://www.amazon.com/Quantum-Theory-Fields-Foundations/dp/0521670535
  68. Wyman M (2011) Galilean-invariant scalar fields can strengthen gravitational lensing. Phys Rev Lett 106:201102. doi: 10.1103/PhysRevLett.106.201102 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Royal Institute of TechnologyStockholmSweden

Personalised recommendations