Advertisement

Introducing the Standard Model, Top Quarks and Spin Correlation

  • Boris LemmerEmail author
Chapter
  • 193 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Curiosity is one of the fundamental driving forces of human kind. Without it, we would not have reached the high level of development in technology and health that we have nowadays and that we do not want to miss. Every little kid is equipped with curiosity and can decide how much it wants to know. Playing the game of asking “Why is that?” again and again will finally end up in asking: “What are we made of?”, “Where do we come from?” and “Why is everything working the way it does?”.

Keywords

Higgs Boson Gauge Boson Charged Lepton Spin Correlation Vacuum Expectation Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Mendelejeff, Die periodische Gesetzmäßigkeit der chemischen Elemente, Ann. Chem. Pharm. VIII Supp, 133 (1871)Google Scholar
  2. 2.
    R.D. Loss, J. Corish, Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC Recommendations 2012). Pure Appl. Chem. 84(7), 1669 (2012)CrossRefGoogle Scholar
  3. 3.
    J.C. Maxwell, A dynamical theory of the electromagnetic field. Phil. Trans. Roy. Soc. Lond. 155, 459 (1865), http://dx.doi.org/10.1098/rstl.1865.0008
  4. 4.
    J. Thomson, Cathode rays. Phil. Mag. 44, 293 (1897), http://dx.doi.org/10.1080/14786449708621070
  5. 5.
    H. Geiger, E. Marsden, The laws of deflexion of a particles through large angles. Phil. Mag. Ser. 6 25(148), 604 (1913), http://dx.doi.org/10.1080/14786440408634197
  6. 6.
    W. Prout, On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Ann. Phil. 6, 321 (1815)Google Scholar
  7. 7.
    W. Prout, Correction of a mistake in the essay on the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms. Ann. Phil. 7, 111 (1816)Google Scholar
  8. 8.
    J. Chadwick, The existence of a neutron. Proc. Roy. Soc. Lond. Ser. A 136(830), 692 (1932), http://dx.doi.org/10.1098/rspa.1932.0112
  9. 9.
    C. Anderson, The positive electron. Phys. Rev. 43, 491 (1933), http://dx.doi.org/10.1103/PhysRev.43.491
  10. 10.
    C. Lattes, H. Muirhead, G. Occhialini, C. Powell, Processes involving charged mesons. Nature 159, 694 (1947), http://dx.doi.org/10.1038/159694a0
  11. 11.
    C. Lattes, G. Occhialini, C. Powell, Observations on the tracks of slow mesons in photographic emulsions. 1. Nature 160, 453 (1947), http://dx.doi.org/10.1038/160453a0
  12. 12.
    C. Lattes, G. Occhialini, C. Powell, Observations on the tracks of slow mesons in photographic emulsions. 2. Nature 160, 486 (1947), http://dx.doi.org/10.1038/160486a0
  13. 13.
    J. Street, E. Stevenson, New evidence for the existence of a particle of mass intermediate between the proton and electron. Phys. Rev. 52, 1003 (1937), http://dx.doi.org/10.1103/PhysRev.52.1003
  14. 14.
    Y. Ne’eman, Derivation of strong interactions from a gauge invariance. Nucl. Phys. 26, 222 (1961), http://dx.doi.org/10.1016/0029-5582(61)90134-1
  15. 15.
    M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067 (1962), http://dx.doi.org/10.1103/PhysRev.125.1067
  16. 16.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964), http://dx.doi.org/10.1016/S0031-9163(64)92001-3
  17. 17.
    E.D. Bloom et al., High-energy inelastic e p scattering at 6-degrees and 10-degrees. Phys. Rev. Lett. 23, 930 (1969), http://dx.doi.org/10.1103/PhysRevLett.23.930
  18. 18.
    M. Breidenbach et al., Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23, 935 (1969), http://dx.doi.org/10.1103/PhysRevLett.23.935
  19. 19.
    G. Miller et al., Inelastic electron-proton scattering at large momentum transfers. Phys. Rev. D 5, 528 (1972), http://dx.doi.org/10.1103/PhysRevD.5.528
  20. 20.
    D0 Collaboration, Search for high mass top quark production in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 74, 2422 (1995), http://dx.doi.org/10.1103/PhysRevLett.74.2422
  21. 21.
    CDF Collaboration, Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626 (1995), http://dx.doi.org/10.1103/PhysRevLett.74.2626
  22. 22.
    C. Quigg, Unanswered questions in the electroweak theory. Ann. Rev. Nucl. Part. Sci. 59, 505 (2009), http://dx.doi.org/10.1146/annurev.nucl.010909.083126
  23. 23.
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC. Eur. Phys. J. C72, 2205 (2012), http://dx.doi.org/10.1140/epjc/s10052-012-2205-9
  24. 24.
    ATLAS Collaboration, Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1 (2012), http://dx.doi.org/10.1016/j.physletb.2012.08.020
  25. 25.
    CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012), http://dx.doi.org/10.1016/j.physletb.2012.08.021
  26. 26.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964), http://dx.doi.org/10.1103/PhysRevLett.13.321
  27. 27.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132 (1964), http://dx.doi.org/10.1016/0031-9163(64)91136-9
  28. 28.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964), http://dx.doi.org/10.1103/PhysRevLett.13.508
  29. 29.
    G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964), http://dx.doi.org/10.1103/PhysRevLett.13.585
  30. 30.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156 (1966), http://dx.doi.org/10.1103/PhysRev.145.1156
  31. 31.
    T. Kibble, Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554 (1967), http://dx.doi.org/10.1103/PhysRev.155.1554
  32. 32.
    R.R. Wilson, The Tevatron. Phys. Today 30N10, 23 (1977), http://dx.doi.org/10.1063/1.3037746
  33. 33.
    D0 Collaboration, An experiment at D0 to study anti-proton–proton collisions at 2-TeV: design report, FERMILAB-PUB-83-111-EGoogle Scholar
  34. 34.
    CDF Collaboration, R. Blair et al., The CDF-II detector: technical design report. FERMILAB-PUB-96-390-EGoogle Scholar
  35. 35.
    S. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579 (1961), http://dx.doi.org/10.1016/0029-5582(61)90469-2
  36. 36.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264 (1967), http://dx.doi.org/10.1103/PhysRevLett.19.1264
  37. 37.
    S. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285 (1970), http://dx.doi.org/10.1103/PhysRevD.2.1285
  38. 38.
    H. Georgi, S.L. Glashow, Unified weak and electromagnetic interactions without neutral currents, Phys. Rev. Lett. 28, 1494 (1972), http://dx.doi.org/10.1103/PhysRevLett.28.1494
  39. 39.
    H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973), http://dx.doi.org/10.1103/PhysRevLett.30.1346
  40. 40.
    H.D. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rep. 14(4), 129 (1974), http://dx.doi.org/dx.doi.org/10.1016/0370-1573(74)90014-3
  41. 41.
    D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973), http://dx.doi.org/10.1103/PhysRevLett.30.1343
  42. 42.
    S. Weinberg, The Making of the standard model. Eur. Phys. J. C34, 5 (2004), http://dx.doi.org/10.1140/epjc/s2004-01761-1
  43. 43.
    G. ’t Hooft, Renormalizable lagrangians for massive yang-mills fields. Nucl. Phys. B35, 167 (1971), http://dx.doi.org/10.1016/0550-3213(71)90139-8
  44. 44.
    G. ’t Hooft, M. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B44, 189 (1972), http://dx.doi.org/10.1016/0550-3213(72)90279-9
  45. 45.
    G. ’t Hooft, M. Veltman, Combinatorics of gauge fields. Nucl. Phys. B50, 318 (1972), http://dx.doi.org/10.1016/S0550-3213(72)80021-X
  46. 46.
    Particle Data Group Collaboration, Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012), http://dx.doi.org/10.1103/PhysRevD.86.010001
  47. 47.
    ATLAS Collaboration, CDF Collaboration, CMS Collaboration, D0 Collaboration, First combination of Tevatron and LHC measurements of the top-quark mass. ATLAS-CONF-2014-008, CDF-NOTE-11071, CMS-PAS-TOP-13-014, D0-NOTE-6416, arXiv:1403.4427 [hep-ex]
  48. 48.
    F. Halzen, A.D. Martin, Quarks And Leptons: An Introductory Course In Modern Particle Physics (Wiley, 1984)Google Scholar
  49. 49.
    H1 Collaboration, Jet production in ep collisions at high \(Q^2\) and determination of alpha(s). Eur. Phys. J. C65, 363 (2010), http://dx.doi.org/10.1140/epjc/s10052-009-1208-7
  50. 50.
    H1 Collaboration, Jet production in ep collisions at low \(Q^2\) and determination of \(\alpha _S\). Eur. Phys. J. C67, 1 (2010), http://dx.doi.org/10.1140/epjc/s10052-010-1282-x
  51. 51.
    ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of alphas. Nucl. Phys. B864, 1 (2012), http://dx.doi.org/10.1016/j.nuclphysb.2012.06.006
  52. 52.
    D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96\) TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B718, 56 (2012),http://dx.doi.org/10.1016/j.physletb.2012.10.003
  53. 53.
    D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in \(p\bar{p}\) collisions at \(\sqrt{s}\)=1.96 TeV. Phys. Rev. D 80, 111107 (2009), http://dx.doi.org/10.1103/PhysRevD.80.111107
  54. 54.
    CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at \(\sqrt{s}\) = 7 TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C73, 2604 (2013), http://dx.doi.org/10.1140/epjc/s10052-013-2604-6
  55. 55.
    M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652 (1973), http://dx.doi.org/10.1143/PTP.49.652
  56. 56.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531 (1963), http://dx.doi.org/10.1103/PhysRevLett.10.531
  57. 57.
    C. Wu et al., Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413 (1957), http://dx.doi.org/10.1103/PhysRev.105.1413
  58. 58.
    UA1 Collaboration, Experimental observation of isolated large transverse energy electrons with associated missing energy at \(\sqrt{s}\) = 540 GeV. Phys. Lett. B122, 103 (1983), http://dx.doi.org/10.1016/0370-2693(83)91177-2
  59. 59.
    UA2 Collaboration, Observation of single isolated electrons of high transverse momentum in events with missing transverse energy at the CERN \(\bar{p}p\) collider. Phys. Lett. B122, 476 (1983), http://dx.doi.org/10.1016/0370-2693(83)91605-2
  60. 60.
    UA1 Collaboration, Experimental observation of lepton pairs of invariant mass around 95GeV/\(c^2\) at the CERN SPS collider. Phys. Lett. B126, 398 (1983), http://dx.doi.org/10.1016/0370-2693(83)90188-0
  61. 61.
    UA2 Collaboration, Evidence for \(Z^0\) \(\rightarrow \) \(e^{+} e^{-}\) at the CERN \(\bar{p}p\) collider. Phys. Lett. B129, 130 (1983), http://dx.doi.org/10.1016/0370-2693(83)90744-X
  62. 62.
    M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets. Il Nuovo Cimento 4(2), 848 (1956), http://dx.doi.org/10.1007/BF02748000
  63. 63.
    T. Nakano, K. Nishijima, Charge independence for v-particles. Prog. Theor. Phys. 10, 581 (1953), http://dx.doi.org/10.1143/PTP.10.581
  64. 64.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, 1995)Google Scholar
  65. 65.
    ATLAS Collaboration, Evidence for the spin-0 nature of the higgs boson using ATLAS data. Phys. Lett. B726, 120 (2013), http://dx.doi.org/10.1016/j.physletb.2013.08.026
  66. 66.
    D. Clowe et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648(2), L109 (2006)ADSCrossRefGoogle Scholar
  67. 67.
    M. Gonzalez-Garcia, M. Maltoni, Phenomenology with massive neutrinos. Phys. Rept. 460, 1 (2008), http://dx.doi.org/10.1016/j.physrep.2007.12.004
  68. 68.
    H. Miyazawa, Baryon number changing currents. Prog. Theor. Phys. 36(6), 1266 (1966), http://dx.doi.org/10.1143/PTP.36.1266
  69. 69.
    P. Ramond, Dual theory for free fermions. Phys. Rev. D 3, 2415 (1971), http://dx.doi.org/10.1103/PhysRevD.3.2415
  70. 70.
    Y. Golfand, E. Likhtman, Extension of the algebra of poincare group generators and violation of p invariance. JETP Lett. 13, 323 (1971)ADSGoogle Scholar
  71. 71.
    A. Neveu, J. Schwarz, Factorizable dual model of pions. Nucl. Phys. B31, 86 (1971), http://dx.doi.org/10.1016/0550-3213(71)90448-2
  72. 72.
    A. Neveu, J. Schwarz, Quark model of dual pions. Phys. Rev. D 4, 1109 (1971), http://dx.doi.org/10.1103/PhysRevD.4.1109
  73. 73.
    J.-L. Gervais, B. Sakita, Field theory interpretation of supergauges in dual models. Nucl. Phys. B34, 632 (1971), http://dx.doi.org/10.1016/0550-3213(71)90351-8
  74. 74.
    D. Volkov, V. Akulov, Is the neutrino a goldstone particle?. Phys. Lett. B46, 109 (1973), http://dx.doi.org/10.1016/0370-2693(73)90490-5
  75. 75.
    J. Wess, B. Zumino, A lagrangian model invariant under supergauge transformations. Phys. Lett. B49, 52 (1974). http://dx.doi.org/10.1016/0370-2693(74)90578-4
  76. 76.
    J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B70, 39 (1974). http://dx.doi.org/10.1016/0550-3213(74)90355-1
  77. 77.
    G. Altarelli, G. Parisi, Asymptotic freedom in parton language. Nucl. Phys. B126, 298 (1977). http://dx.doi.org/10.1016/0550-3213(77)90384-4
  78. 78.
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+ e- annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  79. 79.
    V. Gribov, L. Lipatov, Deep inelastic e p scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  80. 80.
    H1 and ZEUS Collaboration, Combined measurement and QCD analysis of the inclusive e\(^{\pm }\) p scattering cross sections at HERA. JHEP 1001, 109 (2010). http://dx.doi.org/10.1007/JHEP01(2010)109
  81. 81.
    H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). http://dx.doi.org/10.1103/PhysRevD.82.074024
  82. 82.
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B838, 136 (2010). http://dx.doi.org/10.1016/j.nuclphysb.2010.05.008
  83. 83.
    A. Martin et al., Parton distributions for the LHC. Eur. Phys. J. C63, 189 (2009). http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
  84. 84.
    J. Christenson, J. Cronin, V. Fitch, R. Turlay, Evidence for the 2 \(\pi \) Decay of the \(K^0_2\) meson. Phys. Rev. Lett. 13, 138 (1964). http://dx.doi.org/10.1103/PhysRevLett.13.138
  85. 85.
    M.L. Perl et al., Evidence for anomalous lepton production in e+ - e- annihilation. Phys. Rev. Lett. 35, 1489 (1975), http://dx.doi.org/10.1103/PhysRevLett.35.1489
  86. 86.
    S. Herb et al., Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions. Phys. Rev. Lett. 39, 252 (1977), http://dx.doi.org/10.1103/PhysRevLett.39.252
  87. 87.
    C.S. Li, R.J. Oakes, T.C. Yuan, QCD corrections to \(t \rightarrow W^{+} b\). Phys. Rev. D 43, 3759 (1991), http://dx.doi.org/10.1103/PhysRevD.43.3759
  88. 88.
    P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527 (2012), http://dx.doi.org/10.1103/RevModPhys.84.1527
  89. 89.
    I.I. Bigi et al., Production and decay properties of ultraheavy quarks. Phys. Lett. B181, 157 (1986), http://dx.doi.org/10.1016/0370-2693(86)91275-X
  90. 90.
    Y. Grossman, I. Nachshon, Hadronization, spin, and lifetimes. JHEP 0807, 016 (2008), http://dx.doi.org/10.1088/1126-6708/2008/07/016
  91. 91.
    G. Mahlon, S.J. Parke, Spin correlation effects in top quark pair production at the LHC. Phys. Rev. D 81, 074024 (2010), http://dx.doi.org/10.1103/PhysRevD.81.074024
  92. 92.
    J.C. Collins, D.E. Soper, The theorems of perturbative QCD. Ann. Rev. Nucl. Part. Sci. 37, 383 (1987), http://dx.doi.org/10.1146/annurev.ns.37.120187.002123
  93. 93.
    J.C. Collins, D.E. Soper, G.F. Sterman, Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys. 5, 1 (1988)CrossRefGoogle Scholar
  94. 94.
    S. Moch, P. Uwer, Theoretical status and prospects for top-quark pair production at hadron colliders. Phys. Rev. D 78, 034003 (2008), http://dx.doi.org/10.1103/PhysRevD.78.034003
  95. 95.
    M. Czakon, P. Fiedler, A. Mitov, Total top-quark pair-production cross section at hadron colliders through \(\cal{O}(\alpha ^{4}_{S})\). Phys. Rev. Lett. 110(25), 252004 (2013), http://dx.doi.org/10.1103/PhysRevLett.110.252004
  96. 96.
    M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, arXiv:1112.5675 [hep-ph]
  97. 97.
    CDF and D0 Collaboration, Combination of measurements of the top-quark pair production cross section from the Tevatron Collider. Phys. Rev. D 89, 072001 (2014), http://dx.doi.org/10.1103/PhysRevD.89.072001
  98. 98.
    ATLAS Collaboration, Measurement of the cross section for top-quark pair production in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector using final states with two high-pt leptons. JHEP 1205, 059 (2012), http://dx.doi.org/10.1007/JHEP05(2012)059
  99. 99.
    CMS Collaboration, Measurement of the \(t\bar{t}\) production cross section in the dilepton channel in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1211, 067 (2012), http://dx.doi.org/10.1007/JHEP11(2012)067
  100. 100.
    ATLAS Collaboration, Measurement of the ttbar production cross-section in pp collisions at \(\sqrt{s}\) = 7 TeV using kinematic information of lepton+jets events, ATLAS-CONF-2011-121Google Scholar
  101. 101.
    CMS Collaboration, Measurement of the \(t\bar{t}\) production cross section in \(pp\) collisions at \(\sqrt{s}=7\) TeV with lepton + jets final states. Phys. Lett. B720, 83 (2013), http://dx.doi.org/10.1016/j.physletb.2013.02.021
  102. 102.
    ATLAS Collaboration, Combination of ATLAS and CMS top-quark pair cross section measurements using up to 1.1 fb\({}^{-1}\) of data at 7 TeV, ATLAS-CONF-2012-134Google Scholar
  103. 103.
    ATLAS Collaboration, Measurement of the \(t\bar{t}\) production cross-section in \(pp\) collisions at \(\sqrt{s}=8\) TeV using \(e\mu \) events with \(b\)-tagged jets, ATLAS-CONF-2013-097Google Scholar
  104. 104.
    ATLAS Collaboration, Measurement of the top quark pair production cross section in the single-lepton channel with ATLAS in proton-proton collisions at 8 TeV using kinematic fits with b-tagging, ATLAS-CONF-2012-149Google Scholar
  105. 105.
    CMS Collaboration, Top pair cross section in e/mu+jets at 8 TeV, CMS-PAS-TOP-12-006Google Scholar
  106. 106.
    CMS Collaboration, Measurement of the \(t \bar{t}\) production cross section in the dilepton channel in pp collisions at \(\sqrt{s}\) = 8 TeV. JHEP 1402, 024 (2014), http://dx.doi.org/10.1007/JHEP02(2014)024
  107. 107.
  108. 108.
    N. Kidonakis, NNLL resummation for s-channel single top quark production. Phys. Rev. D 81, 054028 (2010), http://dx.doi.org/10.1103/PhysRevD.81.054028
  109. 109.
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production. Phys. Rev. D 83, 091503 (2011), http://dx.doi.org/10.1103/PhysRevD.83.091503
  110. 110.
    N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a \(W^{-}\) or \(H^{-}\). Phys. Rev. D 82, 054018 (2010), http://dx.doi.org/10.1103/PhysRevD.82.054018
  111. 111.
    CDF and D0 Collaboration, Observation of s-channel production of single top quarks at the Tevatron. Phys. Rev. Lett. 112, 231803 (2014), http://dx.doi.org/10.1103/PhysRevLett.112.231803
  112. 112.
    CDF Collaboration, Measurement of single top quark production in 7.5 fb\({}^{-1}\) of CDF data using neural networks, CDF conference note 10794Google Scholar
  113. 113.
    D0 Collaboration, Evidence for s-channel single top quark production in \(p\bar{p}\) collisions at \(\sqrt{s}\) = 1.96 TeV. Phys. Lett. B726, 656 (2013), http://dx.doi.org/10.1016/j.physletb.2013.09.048
  114. 114.
    ATLAS Collaboration, Search for s-channel single top-quark production in \(pp\) collisions at \(\sqrt{s}\) = 7 TeV, ATLAS-CONF-2011-118Google Scholar
  115. 115.
    ATLAS Collaboration, Measurement of the \(t\)-channel single top-quark production cross section in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Phys. Lett. B717, 330 (2012), http://dx.doi.org/10.1016/j.physletb.2012.09.031
  116. 116.
    ATLAS Collaboration, Evidence for the associated production of a \(W\) boson and a top quark in ATLAS at \(\sqrt{s}=7\) TeV. Phys. Lett. B716, 142 (2012), http://dx.doi.org/10.1016/j.physletb.2012.08.011
  117. 117.
    CMS Collaboration, Measurement of the single-top-quark \(t\)-channel cross section in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1212, 035 (2012), http://dx.doi.org/10.1007/JHEP12(2012)035
  118. 118.
    CMS Collaboration, Evidence for associated production of a single top quark and W boson in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. Lett. 110, 022003 (2013), http://dx.doi.org/10.1103/PhysRevLett.110.022003
  119. 119.
    ATLAS Collaboration, Measurement of the inclusive and fiducial cross-section of single top-quark \(t\)-channel events in \(pp\) collisions at \(\sqrt{s}\) = 8 TeV, ATLAS-CONF-2014-007Google Scholar
  120. 120.
    ATLAS Collaboration, Measurement of the cross-section for associated production of a top quark and a W boson at \(\sqrt{s}=8\) TeV with the ATLAS detector, ATLAS-CONF-2013-100Google Scholar
  121. 121.
    CMS Collaboration, Measurement of the single top s-channel cross section at 8 TeV, CMS-PAS-TOP-13-009Google Scholar
  122. 122.
    CMS Collaboration, Measurement of the t-channel single-top-quark production cross section and of the \(\left|V_{tb}\right|\) CKM matrix element in pp collisions at \(\sqrt{s}\) = 8 TeV. JHEP, arXiv:1403.7366 [hep-ex]
  123. 123.
    CMS Collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \(\sqrt{s}\) = 8 TeV. Phys. Rev. Lett., arXiv:1401.2942 [hep-ex]
  124. 124.
    ATLAS Collaboration and CMS Collaboration, Combination of single top-quark cross-sections measurements in the t-channel at \(\sqrt{s}\)=8 TeV with the ATLAS and CMS experiments, CMS-PAS-TOP-12-002, ATLAS-CONF-2013-098Google Scholar
  125. 125.
    D0 Collaboration, Measurement of the top quark mass using dilepton events. Phys. Rev. Lett. 80, 2063 (1998), http://dx.doi.org/10.1103/PhysRevLett.80.2063
  126. 126.
    Tevatron Electroweak Working Group, CDF Collaboration, D0 Collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 8.7 fb\(^{-1}\) at the Tevatron, FERMILAB-CONF-13-164-PPD-TD, arXiv:1305.3929 [hep-ex]
  127. 127.
    ATLAS Collaboration, Combination of ATLAS and CMS results on the mass of the top-quark using up to 4.9 fb\(^{-1}\) of \(\sqrt{s}=7\) TeV LHC data, ATLAS-CONF-2013-102Google Scholar
  128. 128.
    CDF Collaboration, Precision top-quark mass measurements at CDF. Phys. Rev. Lett. 109, 152003 (2012), http://dx.doi.org/10.1103/PhysRevLett.109.152003
  129. 129.
    CDF Collaboration, Top quark mass measurement using the template method at CDF. Phys. Rev. D 83, 111101 (2011), http://dx.doi.org/10.1103/PhysRevD.83.111101
  130. 130.
    CDF Collaboration, Measurement of the top quark mass in the all-hadronic mode at CDF. Phys. Lett. B714, 24 (2012), http://dx.doi.org/10.1016/j.physletb.2012.06.007
  131. 131.
    CDF Collaboration, Top-quark mass measurement in events with jets and missing transverse energy using the full CDF data set. Phys. Rev. D 88(1), 011101 (2013), http://dx.doi.org/10.1103/PhysRevD.88.011101
  132. 132.
    D0 Collaboration, Precise measurement of the top-quark mass from lepton+jets events at D0. Phys. Rev. D 84, 032004 (2011), http://dx.doi.org/10.1103/PhysRevD.84.032004
  133. 133.
    D0 Collaboration, Measurement of the top quark mass in \(p \bar{p}\) collisions using events with two leptons. Phys. Rev. D 86, 051103 (2012), http://dx.doi.org/10.1103/PhysRevD.86.051103
  134. 134.
    ATLAS Collaboration, Measurement of the top quark mass from \(\sqrt{s}=7\) TeV ATLAS data using a 3-dimensional template fit, ATLAS-CONF-2013-046Google Scholar
  135. 135.
    ATLAS Collaboration, Measurement of the top quark mass in dileptonic top quark pair decays with \(\sqrt{s}=7\) TeV ATLAS Data, ATLAS-CONF-2013-077Google Scholar
  136. 136.
    CMS Collaboration, Measurement of the top-quark mass in \(t\bar{t}\) events with lepton+jets final states in \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 1212, 105 (2012), http://dx.doi.org/10.1007/JHEP12(2012)105
  137. 137.
    CMS Collaboration, Measurement of the top-quark mass in \(t\bar{t}\) events with dilepton final states in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C72, 2202 (2012), http://dx.doi.org/10.1140/epjc/s10052-012-2202-z
  138. 138.
    CMS Collaboration, Measurement of the top-quark mass in all-jets \(t\bar{t}\) events in pp collisions at \(\sqrt{s}\)=7 TeV. Eur. Phys. J. C74, 2758 (2014), http://dx.doi.org/10.1140/epjc/s10052-014-2758-x
  139. 139.
    CDF Collaboration, Exclusion of exotic top-like quarks with -4/3 electric charge using jet-charge tagging in single-lepton \(t\bar{t}\) events at CDF. Phys. Rev. D 88(3), 032003 (2013), http://dx.doi.org/10.1103/PhysRevD.88.032003
  140. 140.
    D0 Collaboration, Experimental discrimination between charge 2e/3 top quark and charge 4e/3 exotic quark production scenarios. Phys. Rev. Lett. 98, 041801 (2007), http://dx.doi.org/10.1103/PhysRevLett.98.041801
  141. 141.
    CMS Collaboration, Constraints on the Top-Quark Charge from Top-Pair Events, CMS-PAS-TOP-11-031Google Scholar
  142. 142.
    ATLAS Collaboration, Measurement of the top quark charge in \(pp\) collisions at \(\sqrt{s} =\) 7 TeV with the ATLAS detector. JHEP 1311, 031 (2013), http://dx.doi.org/10.1007/JHEP11(2013)031
  143. 143.
    J.H. Kühn, G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders. Phys. Rev. D 59, 054017 (1999), http://dx.doi.org/10.1103/PhysRevD.59.054017
  144. 144.
    J.H. Kühn, G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited. JHEP 1201, 063 (2012)Google Scholar
  145. 145.
    CDF Collaboration, Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties. Phys. Rev. D 87, 092002 (2013), http://dx.doi.org/10.1103/PhysRevD.87.092002
  146. 146.
    CDF Collaboration, Combination of leptonic \(A_{FB}\) of \(t\bar{t}\) at CDF, CDF Conference Note 11035Google Scholar
  147. 147.
    D0 Collaboration, Measurement of the forward-backward asymmetry in top quark-antiquark production in ppbar collisions using the lepton+jets channel. Phys.Rev. D90(7), 072011 (2014)Google Scholar
  148. 148.
    D0 Collaboration, Measurement of the forward-backward asymmetry in the distribution of leptons in \(t\bar{t}\) events in the lepton+jets channel, FERMILAB-PUB-14-041-E, arXiv:1403.1294 [hep-ex]
  149. 149.
    ATLAS Collaboration, CMS Collaboration, Combination of ATLAS and CMS \(t\bar{t}\) charge asymmetry measurements using LHC proton-proton collisions at \(\sqrt{s}=7\) TeV, ATLAS-CONF-2014-012, CMS-PAS-TOP-14-006Google Scholar
  150. 150.
    J. Aguilar-Saavedra, M. Perez-Victoria, Simple models for the top asymmetry: constraints and predictions. JHEP 1109, 097 (2011), http://dx.doi.org/10.1007/JHEP09(2011)097
  151. 151.
    J. Aguilar-Saavedra, M. Perez-Victoria, Asymmetries in t \(\bar{t}\) production: LHC versus Tevatron. Phys. Rev. D 84, 115013 (2011), http://dx.doi.org/10.1103/PhysRevD.84.115013
  152. 152.
    D0 Collaboration, Forward-backward asymmetry in top quark-antiquark production. Phys. Rev. D 84, 112005 (2011), http://dx.doi.org/10.1103/PhysRevD.84.112005
  153. 153.
    ATLAS Collaboration, Measurement of the top quark pair production charge asymmetry in proton-proton collisions at \(\sqrt{s}\) = 7 TeV using the ATLAS detector. JHEP 1402, 107 (2014), http://dx.doi.org/10.1007/JHEP02(2014)107
  154. 154.
    CMS Collaboration, Inclusive and differential measurements of the \(t \bar{t}\) charge asymmetry in proton-proton collisions at 7 TeV. Phys. Lett. B717, 129 (2012), http://dx.doi.org/10.1016/j.physletb.2012.09.028
  155. 155.
    CDF Collaboration, Evidence for \(t\bar{t}\gamma \) production and measurement of \(\sigma _{t\bar{t}\gamma } / \sigma _{t\bar{t}}\). Phys. Rev. D 84, 031104 (2011), http://dx.doi.org/10.1103/PhysRevD.84.031104
  156. 156.
    ATLAS Collaboration, Measurement of the inclusive \(t\bar{t}\gamma \) cross section with the ATLAS detector, ATLAS-CONF-2011-153Google Scholar
  157. 157.
    CMS Collaboration, Measurement of the inclusive top-quark pair + photon production cross section in the muon + jets channel in pp collisions at 8 TeV, CMS-PAS-TOP-13-011Google Scholar
  158. 158.
    ATLAS Collaboration, Search for \(t\bar{t}Z\) production in the three lepton final state with \(4.7\) \({\rm fb}^{-1}\) of \(\sqrt{s}=7\) TeV \(pp\) collision data collected by the ATLAS detector, ATLAS-CONF-2012-126Google Scholar
  159. 159.
    CMS Collaboration, Measurement of associated production of vector bosons and top quark-antiquark pairs at \(\sqrt{s}\) = 7 TeV. Phys. Rev. Lett. 110, 172002 (2013), http://dx.doi.org/10.1103/PhysRevLett.110.172002
  160. 160.
    G.L. Kane, G. Ladinsky, C. Yuan, Using the top quark for testing standard model polarization and CP predictions. Phys. Rev. D 45, 124 (1992), http://dx.doi.org/10.1103/PhysRevD.45.124
  161. 161.
    A. Czarnecki, J.G. Korner, J.H. Piclum, Helicity fractions of W bosons from top quark decays at NNLO in QCD. Phys. Rev. D 81, 111503 (2010), http://dx.doi.org/10.1103/PhysRevD.81.111503
  162. 162.
    CDF Collaboration, D0 Collaboration, Combination of CDF and D0 measurements of the \(W\) boson helicity in top quark decays. Phys. Rev. D 85, 071106 (2012), http://dx.doi.org/10.1103/PhysRevD.85.071106
  163. 163.
    ATLAS Collaboration, Combination of the ATLAS and CMS measurements of the W-boson polarization in top-quark decays, ATLAS-CONF-2013-033Google Scholar
  164. 164.
    D0 Collaboration, An Improved determination of the width of the top quark. Phys. Rev. D 85, 091104 (2012), http://dx.doi.org/10.1103/PhysRevD.85.091104
  165. 165.
    CMS Collaboration, Measurement of the ratio B(\(t \rightarrow Wb\))/B(\(t \rightarrow Wq\)) in \(pp\) collisions at \(\sqrt{s}\) = 8 TeV. Phys. Lett. B., arXiv:1404.2292 [hep-ex]
  166. 166.
    W. Bernreuther et al., Top quark spin correlations at hadron colliders: predictions at next-to-leading order QCD. Phys. Rev. Lett. 87, 242002 (2001), http://dx.doi.org/10.1103/PhysRevLett.87.242002
  167. 167.
    A. Aeppli, G.J. van Oldenborgh, D. Wyler, Unstable particles in one loop calculations. Nucl. Phys. B428, 126 (1994), http://dx.doi.org/10.1016/0550-3213(94)90195-3
  168. 168.
    M. Baumgart, B. Tweedie, A new twist on top quark spin correlations. JHEP 1303, 117 (2013), http://dx.doi.org/10.1007/JHEP03(2013)117
  169. 169.
    W. Bernreuther, Z.-G. Si, Top quark spin correlations and polarization at the LHC: standard model predictions and effects of anomalous top chromo moments. Phys. Lett. B725(1–3), 115 (2013), http://dx.doi.org/10.1016/j.physletb.2013.06.051
  170. 170.
    G. Mahlon, S.J. Parke, Single top quark production at the LHC: understanding spin. Phys. Lett. B476, 323 (2000), http://dx.doi.org/10.1016/S0370-2693(00)00149-0
  171. 171.
    W. Bernreuther, A. Brandenburg, P. Uwer, Transverse polarization of top quark pairs at the Tevatron and the large hadron collider. Phys. Lett. B368, 153 (1996), http://dx.doi.org/10.1016/0370-2693(95)01475-6
  172. 172.
    G. Mahlon, S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders. Phys. Rev. D 53, 4886 (1996), http://dx.doi.org/10.1103/PhysRevD.53.4886
  173. 173.
    Y. Hara, Angular correlation of charged leptons from T anti-t produced in the gluon fusion. Prog. Theor. Phys. 86, 779 (1991), http://dx.doi.org/10.1143/PTP.86.779
  174. 174.
    T. Arens, L. Sehgal, Azimuthal correlation of charged leptons produced in p anti-p \(\rightarrow \) t anti-t + .... Phys. Lett. B302, 501 (1993), http://dx.doi.org/10.1016/0370-2693(93)90433-I
  175. 175.
    W. Bernreuther, A. Brandenburg, Z. Si, P. Uwer, Top quark pair production and decay at hadron colliders. Nucl. Phys. B690, 81 (2004), http://dx.doi.org/10.1016/j.nuclphysb.2004.04.019
  176. 176.
    T. Stelzer, S. Willenbrock, Spin correlation in top quark production at hadron colliders. Phys. Lett. B374, 169 (1996), http://dx.doi.org/10.1016/0370-2693(96)00178-5
  177. 177.
    G. Mahlon, S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron. Phys. Lett. B411, 173 (1997), http://dx.doi.org/10.1016/S0370-2693(97)00987-8
  178. 178.
    S.J. Parke, Y. Shadmi, Spin correlations in top quark pair production at \(e^{+} e^{-}\) colliders. Phys. Lett. B387, 199 (1996), http://dx.doi.org/10.1016/0370-2693(96)00998-7
  179. 179.
    P. Uwer, Maximizing the spin correlation of top quark pairs produced at the Large Hadron Collider. Phys. Lett. B609, 271 (2005), http://dx.doi.org/10.1016/j.physletb.2005.01.005
  180. 180.
    ATLAS Collaboration, Measurements of spin correlation in top-antitop quark events from proton-proton collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Phys. Rev. D90(11), 112016 (2014)Google Scholar
  181. 181.
    M. Jezabek, J.H. Kühn, V-A tests through leptons from polarized top quarks. Phys. Lett. B329, 317 (1994), http://dx.doi.org/10.1016/0370-2693(94)90779-X
  182. 182.
    M. Jezabek, J.H. Kühn, Lepton spectra from heavy quark decay. Nucl. Phys. B320, 20 (1989), http://dx.doi.org/10.1016/0550-3213(89)90209-5
  183. 183.
    A. Brandenburg, Z. Si, P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks. Phys. Lett. B539, 235 (2002), http://dx.doi.org/10.1016/S0370-2693(02)02098-1
  184. 184.
    A. Czarnecki, M. Jezabek, J.H. Kühn, Lepton spectra from decays of polarized top quarks. Nucl. Phys. B351, 70 (1991), http://dx.doi.org/10.1016/0550-3213(91)90082-9
  185. 185.
    F. Hubaut et al., ATLAS sensitivity to top quark and \(W\) boson polarization in \(t \bar{t}\) events. Eur. Phys. J. C44S2, 13 (2005), http://dx.doi.org/10.1140/epjcd/s2005-02-009-9
  186. 186.
    V.D. Barger, J. Ohnemus, R. Phillips, Spin correlation effects in the hadroproduction and decay of very heavy top quark pairs. Int. J. Mod. Phys. A4, 617 (1989), http://dx.doi.org/10.1142/S0217751X89000297
  187. 187.
    ATLAS Collaboration, Observation of spin correlation in \(t \bar{t}\) events from pp collisions at \(\sqrt{s}\) = 7 TeV using the ATLAS detector. Phys. Rev. Lett. 108, 212001 (2012), http://dx.doi.org/10.1103/PhysRevLett.108.212001
  188. 188.
    CMS Collaboration, Measurements of \(t\bar{t}\) spin correlations and top-quark polarization using dilepton final states in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. Lett. 112, 182001 (2014), http://dx.doi.org/10.1103/PhysRevLett.112.182001
  189. 189.
    CMS Collaboration, Measurement of spin correlations in ttbar production, CMS-PAS-TOP-12-004Google Scholar
  190. 190.
    M. Baumgart, B. Tweedie, Discriminating Top-Antitop Resonances using Azimuthal Decay Correlations. JHEP 1109, 049 (2011), http://dx.doi.org/10.1007/JHEP09(2011)049
  191. 191.
    G. Marques Tavares, M. Schmaltz, Explaining the \(t\)-\(\bar{t}\) asymmetry with a light axigluon. Phys. Rev. D 84, 054008 (2011), http://dx.doi.org/10.1103/PhysRevD.84.054008
  192. 192.
    P.H. Frampton, S.L. Glashow, Chiral color: an alternative to the standard model. Phys. Lett. B190, 157 (1987), http://dx.doi.org/10.1016/0370-2693(87)90859-8
  193. 193.
    M. Arai et al., Influence of \(Z^\prime \) boson on top quark spin correlations at the LHC. Acta Phys. Polon. B 40, 93 (2009)ADSGoogle Scholar
  194. 194.
    A.L. Fitzpatrick et al., Searching for the Kaluza-Klein graviton in bulk RS models. JHEP 0709, 013 (2007), http://dx.doi.org/10.1088/1126-6708/2007/09/013
  195. 195.
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999),http://dx.doi.org/10.1103/PhysRevLett.83.3370
  196. 196.
    J. Gao et al., Next-to-leading order QCD corrections to the heavy resonance production and decay into top quark pair at the LHC. Phys. Rev. D 82, 014020 (2010), http://dx.doi.org/10.1103/PhysRevD.82.014020
  197. 197.
    S. Fajfer, J.F. Kamenik, B. Melic, Discerning new physics in top-antitop production using top spin observables at hadron colliders. JHEP 1208, 114 (2012), http://dx.doi.org/10.1007/JHEP08(2012)114
  198. 198.
    Z. Han et al., (Light) Stop signs. JHEP 1208, 083 (2012), http://dx.doi.org/10.1007/JHEP08(2012)083
  199. 199.
    D. Eriksson et al., New angles on top quark decay to a charged Higgs. JHEP 0801, 024 (2008), http://dx.doi.org/10.1088/1126-6708/2008/01/024
  200. 200.
    D0 Collaboration, Measurement of leptonic asymmetries and top quark polarization in \(t\bar{t}\) production. Phys. Rev. D 87, 011103 (2013), http://dx.doi.org/10.1103/PhysRevD.87.011103
  201. 201.
    ATLAS Collaboration, Measurement of top quark polarization in top-antitop events from proton-proton collisions at \(\sqrt{s}\) = 7 TeV using the ATLAS detector. Phys. Rev. Lett. 111, 232002 (2013), http://dx.doi.org/10.1103/PhysRevLett.111.232002
  202. 202.
    D0 Collaboration, Measurement of spin correlation in \(t\bar{t}\) production using dilepton final states. Phys. Lett. B702, 16 (2011), http://dx.doi.org/10.1016/j.physletb.2011.05.077
  203. 203.
    D0 Collaboration, Measurement of spin correlation in \(t\bar{t}\) production using a matrix element approach. Phys. Rev. Lett. 107, 032001 (2011), http://dx.doi.org/10.1103/PhysRevLett.107.032001
  204. 204.
    D0 Collaboration, Evidence for spin correlation in \(t\bar{t}\) production. Phys. Rev. Lett. 108, 032004 (2012), http://dx.doi.org/10.1103/PhysRevLett.108.032004
  205. 205.
    CDF Collaboration, Measurement of \(t\bar{t}\) spin correlations coefficient in 5.1 fb\(^{-1}\) dilepton candidates, CDF Conference Note 10719Google Scholar
  206. 206.
    CDF Collaboration, Measurement of \(t\bar{t}\) helicity fractions and spin correlation using reconstructed lepton+jets events, CDF conference Note 10211Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.II. Physikalisches InstitutGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations