Skip to main content

Receiver Architectures

  • Chapter
Wideband CMOS Receivers

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 820 Accesses

Abstract

The main purpose of this chapter is to introduce basic concepts related with RF electronics and receiver architectures. The basic concepts are introduced and the advantages and disadvantages of different receiver architectures are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Known as Friis’ equation [14].

References

  1. B. Razavi, RF Microelectronics, 2nd edn. (Prentice Hall, New York, 2011)

    Google Scholar 

  2. B. Razavi, Design of Analog CMOS Integrated Circuits (McGraw-Hill, Los Angeles, 2002)

    Google Scholar 

  3. A. Mirzaei, H. Darabi, Analysis of imperfections on performance of 4-phase passive-mixer-based high-q bandpass filters in SAW-less receivers. IEEE Trans. Circuits Syst. Regul. Pap. 58(5), 879–892 (2011)

    Article  MathSciNet  Google Scholar 

  4. A. Mirzaei, H. Darabi, D. Murphy, Architectural evolution of integrated m-phase high-q bandpass filters. IEEE Trans. Circuits Syst. Regul. Pap. 59(1), 52–65 (2012)

    Article  MathSciNet  Google Scholar 

  5. A. Ghaffari, E. Klumperink, M.C.M. Soer, B. Nauta, Tunable high-q n-path band-pass filters: modeling and verification. IEEE J. Solid State Circuits 46(5), 998–1010 (2011)

    Article  Google Scholar 

  6. A. Ghaffari, E. Klumperink, B. Nauta, A differential 4-path highly linear widely tunable on-chip band-pass filter, in 2010 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (IEEE, Anaheim, 2010), pp. 299–302

    Book  Google Scholar 

  7. M. Fernandes, L.B. Oliveira, J.P. Oliveira, A widely tunable narrowband balun-LNA with integrated filtering, in Mixed Design of Integrated Circuits Systems (MIXDES), 2014 Proceedings of the 21st International Conference (2014), pp. 160–165

    Google Scholar 

  8. R. Ludwig, P. Bretchko, RF Circuit Design: Theory and Applications (Prentice-Hall, Englewood Cliffs, 2000)

    Google Scholar 

  9. D.M. Pozar, Microwave Engineering (Wiley, Hoboken, 2012)

    Google Scholar 

  10. A.S. Sedra, K.C. Smith, Microelectronic Circuits: International Edition (Oxford University Press, Oxford, 2010)

    Google Scholar 

  11. T.C. Carusone, D.A. Johnson, K.W. Martin, Analog Integrated Circuit Design, 2nd edn. (Wiley, London, 2012)

    Google Scholar 

  12. A. Abidi, High-frequency noise measurements on FET’s with small dimensions. IEEE Trans. Electron Devices 33(11), 1801–1805 (1986)

    Article  Google Scholar 

  13. Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edn. (Oxford University Press, Oxford, 1999)

    Google Scholar 

  14. H. Friis, Noise figures of radio receivers. Proc. IRE 32(7), 419–422 (1944)

    Google Scholar 

  15. L.B. Oliveira, J.R. Fernandes, I.M. Filanovsky, C.J.M. Verhoeven, M.M. Silva, Analysis and Design of Quadrature Oscillators (Springer, Berlin, 2010)

    Google Scholar 

  16. R. Hartley, Modulation system. US patent 1666206, April 1928

    Google Scholar 

  17. J. Mitola, The software radio architecture. IEEE Commun. Mag. 33(5), 26–38 (1995)

    Article  Google Scholar 

  18. A. Abidi, The path to the software-defined radio receiver. IEEE J. Solid-State Circuits 42(5), 954–966 (2007)

    Article  Google Scholar 

  19. E.M. Klumperink, B. Nauta, Software defined radio receivers exploiting noise cancelling: a tutorial review. IEEE Commun. Mag. 52(10), 111–117 (2014)

    Article  Google Scholar 

  20. F. Lin, P.-I. Mak, R.P. Martins, Wideband receivers: design challenges, tradeoffs and state-of-the-art. IEEE Circuits Syst. Mag. 15(1), 12–24 (2015)

    Article  Google Scholar 

  21. S. Blaakmeer, E. Klumperink, D. Leenaerts, B. Nauta, Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J. Solid-State Circuits 43(6), 1341–1350 (2008)

    Article  Google Scholar 

  22. D. Shaeffer, T. Lee, A 1.5-v, 1.5-GHz CMOS low noise amplifier. IEEE J. Solid-State Circuits 32(5), 745–759 (1997)

    Google Scholar 

  23. A. Mirzaei, H. Darabi, J. Leete, X. Chen, K. Juan, A. Yazdi, Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers. IEEE J. Solid-State Circuits 44(10), 2678–2688 (2009)

    Article  Google Scholar 

  24. D. Kaczman, M. Shah, M. Alam, M. Rachedine, D. Cashen, L. Han, A. Raghavan, A single-chip 10-band WCDMA/HSDPA 4-band GSM/EDGE SAW-less CMOS receiver with DigRF 3g interface and 90 dBm IIP2. IEEE J. Solid-State Circuits 44(3), 718–739 (2009)

    Article  Google Scholar 

  25. B. Gilbert, A precise four-quadrant multiplier with subnanosecond response. IEEE J. Solid-State Circuits 3(4), 365–373 (1968)

    Article  Google Scholar 

  26. B. Razavi, A study of phase noise in cmos oscillators. IEEE J. Solid-State Circuits 31(3), 331–343 (1996)

    Article  Google Scholar 

  27. A. Abidi, R. Meyer, Noise in relaxation oscillators. IEEE J. Solid-State Circuits 18(6), 794–802 (1983)

    Article  Google Scholar 

  28. M. Grozing, B. Phillip, M. Berroth, Cmos ring oscillator with quadrature outputs and 100 mhz to 3.5 GHz tuning range, in Proceedings of the 29th European Solid-State Circuits Conference, 2003, ESSCIRC ’03 (2003), pp. 679–682

    Google Scholar 

  29. A. Mirzaei, H. Darabi, J. Leete, Y. Chang, Analysis and optimization of direct-conversion receivers with 25% duty-cycle current-driven passive mixers. IEEE Trans. Circuits Syst. Regul. Pap. 57(9), 2353–2366 (2010)

    Article  MathSciNet  Google Scholar 

  30. Z. Ru, E. Klumperink, B. Nauta, Discrete-time mixing receiver architecture for rf-sampling software-defined radio. IEEE J. Solid-State Circuits 45(9), 1732–1745 (2010)

    Article  Google Scholar 

  31. J.R. Custódio, I. Bastos, L.B. Oliveira, J.P. Oliveira, P. Pereira, J. Goes, E. Bruun, A 6.2 mw 0.024 mm2 fully-passive rf downconverter with 12 db gain enhancement using MOS parametric amplification. Analog Integr. Circ. Sig. Process 75, 299–304 (2013)

    Google Scholar 

  32. I. Hunter, Theory and Design of Microwave Filters. The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK: IET (2001)

    Google Scholar 

  33. I. Hunter, A. Guyette, R.D. Pollard, Passive microwave receive filter networks using low-q resonators. IEEE Microw. Mag. 6(3), 46–53 (2005)

    Article  Google Scholar 

  34. L.E. Franks, I.W. Sandberg, An alternative approach to the realization of network transfer functions: the n-path filter. Bell Syst. Tech. J. 39(5), 1321–1350 (1960)

    Article  Google Scholar 

  35. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, The blixer, a wideband balun-LNA-i/q-mixer topology. IEEE J. Solid-State Circuits 43(12), 2706–2715 (2008)

    Article  Google Scholar 

  36. I. Bastos, L. Oliveira, J. Goes, M. Silva, MOSFET-only wideband LNA with noise cancelling and gain optimization, in Mixed Design of Integrated Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference (June 2010), pp. 306–311

    Google Scholar 

  37. A. Mirzaie, A. Yazdi, Z. Zhou, E. Chang, P. Suri, H. Darabi, A 65nm CMOS quad-band SAW-less receiver for GSM/GPRS/EDGE, in 2010 IEEE Symposium on VLSI Circuits (VLSIC) (2010), pp. 179–180

    Google Scholar 

  38. R. Roovers, D. Leenaerts, J. Bergervoet, K. Harish, R. van de Beek, G. van der Weide, H. Waite, Y. Zhang, S. Aggarwal, C. Razzell, An interference-robust receiver for ultra-wideband radio in SiGe BiCMOS technology. IEEE J. Solid-State Circuits 40(12), 2563–2572 (2005)

    Google Scholar 

  39. W. Sansen, M. Steyaert, V. Peluso, E. Peeters, Toward sub 1 v analog integrated circuits in submicron standard CMOS technologies, in 1998 IEEE International Solid-State Circuits Conference, Digest of Technical Papers (1998), pp. 186–187

    Google Scholar 

  40. R. Carvajal, J. Ramirez-Angulo, A. Lopez-Martin, A Torralba, J. Galan, A Carlosena, F. Chavero, The flipped voltage follower: a useful cell for low-voltage low-power circuit design. IEEE Trans. Circuits Syst. Regul. Pap. 52(7), 1276–1291 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernandes, M.D., Oliveira, L.B. (2015). Receiver Architectures. In: Fernandes, M., Oliveira, L. (eds) Wideband CMOS Receivers. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-18920-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18920-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18919-2

  • Online ISBN: 978-3-319-18920-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics