Skip to main content

Independent Component Analysis-Based Classification of Alzheimer’s Disease from Segmented MRI Data

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

Abstract

An accurate and early diagnosis of the Alzheimer’s disease (AD) is of fundamental importance to improve diagnosis techniques, to better understand this neurodegenerative process and to develop effective treatments. In this work, a novel classification method based on independent component analysis (ICA) and supervised learning methods is proposed to be applied on segmented brain magnetic resonance imaging (MRI) from Alzheimer’s disease neuroimaging initiative (ADNI) participants for automatic classification task. The ICA-based method is composed of three step. First, MRI are normalized and segmented by the Statistical Parametric Mapping (SPM8) software. After that, average image of normal (NC), mild cognitive impairment (MCI) or AD subjects are computed. Then, FastICA is applied to these different average images for extracting a set of independent components (IC) which symbolized each class characteristics. Finally, each brain image from the database was projected onto the space spanned by this independent components basis for feature extraction, a support vector machine (SVM) is used to manage the classification task. A 87.5% accuracy in identifying AD from NC, with 90.4% specificity and 84.6% sensitivity is obtained. According to the experimental results, we can see that this proposed method can successfully differentiate AD, MCI and NC subjects. So, it is suitable for automatic classification of sMRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alzheimer’s Association, Alzheimer’s News (2013), http://www.alz.org/news and events facts and figures report.asp

  2. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage 56, 766–781 (2011)

    Article  Google Scholar 

  3. Illán, I.A., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D., López, M.M., Segovia, F., Chaves, R., Gómez-Rio, M., Puntonet, C.G.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Information Sciences 181, 903–916 (2011)

    Article  Google Scholar 

  4. Illán, I.A., Górriz, J.M., Ramírez, J., Salas-Gonzalez, D., López, M.M., Segovia, F., Padilla, P., Puntonet, C.G.: Projecting independent components of SPECT images for computer aided diagnosis of Alzheimers disease. Pattern Recognition Letters 31, 1342–1347 (2010)

    Article  Google Scholar 

  5. Duin, R.P.W.: Classifiers in almost empty spaces. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 2, pp. 1–7 (2000)

    Google Scholar 

  6. Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Calliot, O., Sarazin, M., Dubais, B., Lehericy, S., Benali, H.: Support vector machine-based classification of alzheimer’s disease from whole-brain anatomical mri. Neuroradiology 51, 73–83 (2009)

    Article  Google Scholar 

  7. Jaramillo, D., Rojas, I., Valenzuela, O., Garcia, I., Prieto, A.: Advanced systems in medical decision-making using intelligent computing. Application to magnetic resonance imaging. In: International Joint Conference on Neural Networks (IJCNN) (2012)

    Google Scholar 

  8. Padilla, P., Lopez, M., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Alvarez, I.: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of Alzheimer’s disease. IEEE Trans. Med. Imaging 31, 207–216 (2012)

    Article  Google Scholar 

  9. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, Pittsburgh (1992)

    Google Scholar 

  10. Martinez-Murcia, F.J., Grriz, J.M., Ramrez, J., Moreno-Caballero, M., Gomez-Rio, M.: Parkinson’s Progression Markers Initiative. Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of parkinsonism. Medical Physics 41, 012502 (2013)

    Google Scholar 

  11. Khedher, L., Ramrez, J., Grriz, J.M., Brahim, A., Segovia, F.: Early diagnosis of Alzheimer’s disease based on Partial Least Squares, Principal Component Analysis and Support Vector Machine using segmented MRI images. Neurocomputing 151, 139–150 (2015)

    Article  Google Scholar 

  12. Chaves, R., Ramrez, J., Grriz, J.M., Lpez, M., Salas-Gonzalez, D., Alvarez, I., Segovia, F.: SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting. Neurosci. Lett. 461, 293–297 (2009)

    Article  Google Scholar 

  13. Ashburner, J., Friston, K.: Human Brain Function (2003)

    Google Scholar 

  14. Psychiatry SBMGD, Vbm toolboxes. University of Jena (2013), http://dbm.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf

  15. Ashburner, J., Barnes, G., Chen, C., Daunizeau, J., Flandin, G., Friston, K.: SPM8 manual. In: Functional Imaging Laboratory. Institute of Neurology, London (2012)

    Google Scholar 

  16. Stoeckel, J., Ayache, N., Malandain, G., Malick Koulibaly, P., Ebmeier, K.P., Darcourt, J.: Automatic classification of spect images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Stoeckel, J., Malandain, G., Migneco, O., Malick Koulibaly, P., Robert, P., Ayache, N., Darcourt, J.: Classification of SPECT images of normal subjects versus images of alzheimer’s disease patients. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 666–674. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Khedher, L., Ramrez, J., Grriz, J.M., Brahim, A.: Automatic classification of segmented MRI data combining Independent Component Analysis and Support Vector Machines. In: Innovation in Medicine and Healthcare, InMed, vol. 207. Lecture notes in IOS Press (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Khedher, L., Ramírez, J., Górriz, J.M., Brahim, A., Illán, I.A. (2015). Independent Component Analysis-Based Classification of Alzheimer’s Disease from Segmented MRI Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics