Skip to main content

Intensity Normalization of 123 I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear Regression Approach

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

  • 3164 Accesses

Abstract

The intensity normalization step is essential, as it corresponds to the initial step in any subsequent computer-based analysis. In this work, a proposed intensity normalization approach based on a predictive modeling using multivariate linear regression (MLR) is presented. Different intensity normalization parameters derived from this model will be used in a linear procedure to perform the intensity normalization of 123 I-ioflupane-SPECT brain images. This proposed approach is compared to conventional intensity normalization methods, such as specific-to-non-specific binding ratio, integral-based intensity normalization and intensity normalization by minimizing the Kullback-Leibler divergence. For the performance evaluation, a statistical analysis is used by applying the Euclidean distance and the Jeffreys divergence. In addition, a classification task using support vector machine to evaluate the impact of the proposed methodology for the development of a computer aided diagnosis (CAD) system for Parkinsonian syndrome detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booij, J., Habraken, J., Bergmans, P., Tissingh, G., Winogrodzka, A., Wolters, E., Janssen, A., Stoof, J., Van Royen, E.: Imaging of dopamine transporters with Iodine-123-FP-CIT SPECT in healthy controls and patients with parkinson’s disease. Journal of Nuclear Medicine 39(11), 1879–1884 (1998)

    Google Scholar 

  2. Jankovic, J., Rajput, A., McDermott, M., Perl, D.: The evolution of diagnosis in early parkinson disease. Archives of Neurology 57(3), 369–372 (2000)

    Article  Google Scholar 

  3. Seifert, K.D., Wiener, J.I.: The impact of DaTscan on the diagnosis and management of movement disorders: A retrospective study. American Journal of Neurodegenerative Disease 2(1), 29–34 (2013)

    Google Scholar 

  4. Illán, I.A., Górriz, J.M., Ramírez, J., Segovia, F., Jimenez-Hoyuela, J.M., Lozano, S.J.O.: Automatic assistance to parkinson’s disease diagnosis in DaTSCAN SPECT imaging. Medical Physics 39(10), 5971–5980 (2012)

    Article  Google Scholar 

  5. Benamer, H.T.S., Patterson, J., Grosset, D.G.: Accurate Differentiation of Parkinsonism and Essential Tremor Using Visual Assessment of [123I]-FP-CIT SPECT Imaging: The [123I]-FP-CIT Study Group. Movement Disorders 15(3), 503–510 (2000)

    Article  Google Scholar 

  6. Brahim, A., Górriz, J., Ramírez, J., Khedher, L.: Linear intensity normalization of DaTSCAN images using Mean Square Error and a model-based clustering approach. Studies in Health Technology and Informatics 207, 251–260 (2014)

    Google Scholar 

  7. Padilla, P., Górriz, J., Ramírez, J., Salas-González, D.D., Illn, I.: Intensity normalization in the analysis of functional DaTSCAN SPECT images: The α-stable distribution-based normalization method vs other approaches. Neurocomputing 150, 4–15 (2015)

    Article  Google Scholar 

  8. Brahim, A., Górriz, J., Ramírez, J., Khedher, L.: Applications of gaussian mixture models and mean squared error within datscan spect imaging. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 3617–3621 (2014)

    Google Scholar 

  9. Scherfler, C., Seppi, K., Donnemiller, E., Goebel, G., Brenneis, C., Virgolini, I., Wenning, G., Poewe, W.: Voxel-wise analysis of [123 I] β-CIT SPECT differentiates the Parkinson variant of multiple system atrophy from idiopathic Parkinson’s disease. Brain 128(7), 1605–1612 (2005)

    Article  Google Scholar 

  10. Weisenfeld, N., Warfteld, S.: Normalization of joint image-intensity statistics in MRI using the Kullback-Leibler divergence. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004, vol. 1, pp. 101–104 (2004)

    Google Scholar 

  11. Kullback, S.: Information Theory and Statistics. Dover Books on Mathematics. John Wiley & Sons, New York (1959)

    MATH  Google Scholar 

  12. Galimberti, G., Soffritti, G.: A multivariate linear regression analysis using finite mixtures of t distributions. Computational Statistics and Data Analysis 71, 138–150 (2014)

    Article  MathSciNet  Google Scholar 

  13. Jeffreys, H.: An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of London Series A 186, 453–461 (1946)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Brahim, A., Górriz, J.M., Ramírez, J., Khedher, L. (2015). Intensity Normalization of 123 I-ioflupane-SPECT Brain Images Using a Model-Based Multivariate Linear Regression Approach. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics