Abstract
In the olfactory system we can observe two types of neurons based on their responses to odorants. Specialist neurons react to a few odorants, while generalist neurons respond to a wide range of them. These kinds of neurons can be observed in different parts of the olfactory system. In the antennal lobe (AL), these neurons encode odorant information and in the extrinsic neurons (ENs) of the mushroom bodies (MB) they can learn and identify different kind of odorants based on the selective and generalist response. The classification of specialists and generalists neurons in Kenyon cells (KCs), which serve as a bridge between AL and ENs, may seem arbitrary. However KCs have the unique mission of increasing the separability between different odorants, to achieve a better information processing performance. To carry out this function, the connections between the antennal lobe and Kenyon cells do not require a specific connectivity pattern. Since KCs can be specialists or generalists by chance and olfactory learning performance relies on their feature extraction capabilities, we analyze the role of generalist and specialist neurons in an olfactory discrimination task. Role that we studied by varying the percentage of these two kind of neurons in KC layer. We determined that specialist neurons are a decisive factor to perform optimal odorant classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for understanding decision making through integration of basic learning rules. The Journal of Neuroscience 33(13), 5686–5697 (2013)
Campbell, R.A.A., Honegger, K.S., Qin, H., Li, W., Demir, E., Turner, G.C.: Imaging a population code for odor identity in the drosophila mushroom body. The Journal of NeuroscienceSPIE Proc. 33(25), 10568–10581 (2013)
Chandra, S.B., Wright, G.A., Smith, B.H.: Latent inhibition in the in the honeybee, apis mellifera: is it a unitary phenomenon? Anim Cogn. 13, 805–815 (2010)
Christensen, T.A.: Making scents out of spatial and temporal codes in specialist and generalist olfactory networks. Chem. Senses 30, 283–284 (2005)
Dubnau, J., Grady, L., Kitamoto, T., Tully, T.: Disruption of neurotransmission in drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411(6836), 476–480 (2001)
Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)
Gruntman, E., Turner, G.C.: Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nature Neuroscience 16, 1821–1829 (2013)
Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)
Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)
Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11, 188–200 (2010)
LeCun, Y., Cortes, C.: Mnist database (1998), http://yann.lecun.com/exdb/mnist/
Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)
Lubow, R.E.: Latent inhibition. Psychol Bull. 79, 398–407 (1973)
Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)
Montero, A., Huerta, R., Rodriguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Natural and Artificial Models in Computation and Biology - 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Proceedings, Part I, Mallorca, Spain, June 10-14, pp. 16–25 (2013)
Montero, A., Huerta, R., Rodriguez, F.B.: Neural trade-offs among specialist and generalist neurons in pattern recognition. In: Proceedings of the Engineering Applications of Neural Networks - 15th International Conference, EANN 2014, Sofia, Bulgaria, September 5-7, pp. 71–80 (2014)
Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 151, 69–77 (2015)
Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190), 956–960 (2008)
Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)
Rodríguez, F.B., Huerta, R.: Techniques for temporal detection of neural sensitivity to external stimulation. Biol. Cybern. 100(4), 289–297 (2009)
Rodríguez, F.B., Huerta, R., Aylwin, M.: Neural sensitivity to odorants in deprived and normal olfactory bulbs. PLoS ONE 8(4) (2013)
Salinas, E., Thier, P.: Gain modulation: A major computational principle of the central nervous system. Neuron 27, 15–21 (2000)
Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Computational Biology 9(7) (2013)
Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004)
Wilson, R.I., Turner, G.C., Laurent, G.: Transformation of olfactory representations in the drosophila antennal lobe. Science 303(5656), 366–370 (2004)
Zavada, A., Buckley, C.L., Martinez, D., Rospars, J.-P., Nowotny, T.: Competition-based model of pheromone component ratio detection in the moth. PLoS One 6(2), e16308 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Montero, A., Huerta, R., Rodriguez, F.B. (2015). Specialist Neurons in Feature Extraction Are Responsible for Pattern Recognition Process in Insect Olfaction. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-18914-7_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18913-0
Online ISBN: 978-3-319-18914-7
eBook Packages: Computer ScienceComputer Science (R0)