Skip to main content

Specialist Neurons in Feature Extraction Are Responsible for Pattern Recognition Process in Insect Olfaction

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

In the olfactory system we can observe two types of neurons based on their responses to odorants. Specialist neurons react to a few odorants, while generalist neurons respond to a wide range of them. These kinds of neurons can be observed in different parts of the olfactory system. In the antennal lobe (AL), these neurons encode odorant information and in the extrinsic neurons (ENs) of the mushroom bodies (MB) they can learn and identify different kind of odorants based on the selective and generalist response. The classification of specialists and generalists neurons in Kenyon cells (KCs), which serve as a bridge between AL and ENs, may seem arbitrary. However KCs have the unique mission of increasing the separability between different odorants, to achieve a better information processing performance. To carry out this function, the connections between the antennal lobe and Kenyon cells do not require a specific connectivity pattern. Since KCs can be specialists or generalists by chance and olfactory learning performance relies on their feature extraction capabilities, we analyze the role of generalist and specialist neurons in an olfactory discrimination task. Role that we studied by varying the percentage of these two kind of neurons in KC layer. We determined that specialist neurons are a decisive factor to perform optimal odorant classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bazhenov, M., Huerta, R., Smith, B.H.: A computational framework for understanding decision making through integration of basic learning rules. The Journal of Neuroscience 33(13), 5686–5697 (2013)

    Article  Google Scholar 

  2. Campbell, R.A.A., Honegger, K.S., Qin, H., Li, W., Demir, E., Turner, G.C.: Imaging a population code for odor identity in the drosophila mushroom body. The Journal of NeuroscienceSPIE Proc. 33(25), 10568–10581 (2013)

    Google Scholar 

  3. Chandra, S.B., Wright, G.A., Smith, B.H.: Latent inhibition in the in the honeybee, apis mellifera: is it a unitary phenomenon? Anim Cogn. 13, 805–815 (2010)

    Article  Google Scholar 

  4. Christensen, T.A.: Making scents out of spatial and temporal codes in specialist and generalist olfactory networks. Chem. Senses 30, 283–284 (2005)

    Article  Google Scholar 

  5. Dubnau, J., Grady, L., Kitamoto, T., Tully, T.: Disruption of neurotransmission in drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411(6836), 476–480 (2001)

    Article  Google Scholar 

  6. Garcia-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory systems. J. Comput. Neurosci. 15, 5–17 (2003)

    Article  Google Scholar 

  7. Gruntman, E., Turner, G.C.: Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nature Neuroscience 16, 1821–1829 (2013)

    Article  Google Scholar 

  8. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.: Learning classification in the olfactory system of insects. Neural Comput. 16, 1601–1640 (2004)

    Article  MATH  Google Scholar 

  9. Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: Explorations in the insect brain. Neural Comput. 21, 2123–2151 (2009)

    Article  MATH  Google Scholar 

  10. Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and commonalities. Nature Reviews Neuroscience 11, 188–200 (2010)

    Google Scholar 

  11. LeCun, Y., Cortes, C.: Mnist database (1998), http://yann.lecun.com/exdb/mnist/

  12. Leitch, B., Laurent, G.: GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J. Comp. Neurol. 372, 487–514 (1996)

    Article  Google Scholar 

  13. Lubow, R.E.: Latent inhibition. Psychol Bull. 79, 398–407 (1973)

    Article  Google Scholar 

  14. Marin, E.C., Jefferis, G.S., Komiyama, T., Zhu, H., Luo, L.: Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  Google Scholar 

  15. Montero, A., Huerta, R., Rodriguez, F.B.: Neuron threshold variability in an olfactory model improves odorant discrimination. In: Natural and Artificial Models in Computation and Biology - 5th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2013, Proceedings, Part I, Mallorca, Spain, June 10-14, pp. 16–25 (2013)

    Google Scholar 

  16. Montero, A., Huerta, R., Rodriguez, F.B.: Neural trade-offs among specialist and generalist neurons in pattern recognition. In: Proceedings of the Engineering Applications of Neural Networks - 15th International Conference, EANN 2014, Sofia, Bulgaria, September 5-7, pp. 71–80 (2014)

    Google Scholar 

  17. Montero, A., Huerta, R., Rodriguez, F.B.: Regulation of specialists and generalists by neural variability improves pattern recognition performance. Neurocomputing 151, 69–77 (2015)

    Article  Google Scholar 

  18. Olsen, S.R., Wilson, R.I.: Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452(7190), 956–960 (2008)

    Article  Google Scholar 

  19. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.: Oscillations and sparsening of odor representations in the mushroom body. Science 297(5580), 359–365 (2002)

    Article  Google Scholar 

  20. Rodríguez, F.B., Huerta, R.: Techniques for temporal detection of neural sensitivity to external stimulation. Biol. Cybern. 100(4), 289–297 (2009)

    Article  MATH  Google Scholar 

  21. Rodríguez, F.B., Huerta, R., Aylwin, M.: Neural sensitivity to odorants in deprived and normal olfactory bulbs. PLoS ONE 8(4) (2013)

    Google Scholar 

  22. Salinas, E., Thier, P.: Gain modulation: A major computational principle of the central nervous system. Neuron 27, 15–21 (2000)

    Article  Google Scholar 

  23. Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network conditions in early sensory coding. PLoS Computational Biology 9(7) (2013)

    Google Scholar 

  24. Tanaka, N.K., Awasaki, T., Shimada, T., Ito, K.: Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449–457 (2004)

    Article  Google Scholar 

  25. Wilson, R.I., Turner, G.C., Laurent, G.: Transformation of olfactory representations in the drosophila antennal lobe. Science 303(5656), 366–370 (2004)

    Article  Google Scholar 

  26. Zavada, A., Buckley, C.L., Martinez, D., Rospars, J.-P., Nowotny, T.: Competition-based model of pheromone component ratio detection in the moth. PLoS One 6(2), e16308 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Montero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Montero, A., Huerta, R., Rodriguez, F.B. (2015). Specialist Neurons in Feature Extraction Are Responsible for Pattern Recognition Process in Insect Olfaction. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics