Skip to main content

Towards a Generic Simulation Tool of Retina Models

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

The retina is one of the most extensively studied neural circuits in the Visual System. Numerous models have been proposed to predict its neural behavior on the response to artificial and natural visual patterns. These models can be considered an important tool for understanding the underlying biophysical and anatomical mechanisms. This paper describes a general-purpose simulation environment that fits to different retina models and provides a set of elementary simulation modules at multiple abstraction levels. The platform can simulate many of the biological mechanisms found in retinal cells, such as signal gathering though chemical synapses and gap junctions, variations in the receptive field size with eccentricity, membrane integration by linear and single-compartment models and short-term synaptic plasticity. A built-in interface with neural network simulators reproduces the spiking output of some specific cells, such as ganglion cells, and allows integration of the platform with models of higher visual areas. We used this software to implement whole retina models, from photoreceptors up to ganglion cells, that reproduce contrast adaptation and color opponency mechanisms in the retina. These models were fitted to published electro-physiological data to show the potential of this tool to generalize and adapt itself to a wide range of retina models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010)

    Article  Google Scholar 

  2. Lee, B.B., Martin, P.R., Grünert, U.: Retinal connectivity and primate vision. Progress in Retinal and Eye Research 29(6), 622–639 (2010)

    Article  Google Scholar 

  3. Beeman, D.: History of neural simulation software. In: 20 Years of Computational Neuroscience, pp. 33–71. Springer (2013)

    Google Scholar 

  4. Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  5. Hines, M.L., Carnevale, N.T.: The neuron simulation environment. Neural Computation 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  6. Benoit, A., Caplier, A., Durette, B., Hérault, J.: Using human visual system modeling for bio-inspired low level image processing. Computer Vision and Image Understanding 114(7), 758–773 (2010)

    Article  Google Scholar 

  7. Wohrer, A., Kornprobst, P.: Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Ros, E., Fernández, E.: A design framework to model retinas. Biosystems 87(2), 156–163 (2007)

    Article  Google Scholar 

  10. Hérault, J.: A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12(2), 113–129 (1996)

    Article  MATH  Google Scholar 

  11. De Valois, R.L., De Valois, K.K.: A multi-stage color model. Vision research 33(8), 1053–1065 (1993)

    Article  Google Scholar 

  12. Andreou, A.G., Boahen, K.A.: A contrast sensitive silicon retina with reciprocal synapses. Advances in Neural Information Processing Systems (NIPS) 4, 764–772 (1991)

    Google Scholar 

  13. Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)

    Article  Google Scholar 

  14. Ozuysal, Y., Baccus, S.A.: Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73(5), 1002–1015 (2012)

    Article  Google Scholar 

  15. Mante, V., Frazor, R.A., Bonin, V., Geisler, W.S., Carandini, M.: Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience 8(12), 1690–1697 (2005)

    Article  Google Scholar 

  16. Baccus, S.A., Meister, M.: Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5), 909–919 (2002)

    Article  Google Scholar 

  17. Kim, K.J., Rieke, F.: Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. The Journal of Neuroscience 21(1), 287–299 (2001)

    Google Scholar 

  18. Mante, V., Bonin, V., Carandini, M.: Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58(4), 625–638 (2008)

    Article  Google Scholar 

  19. Kim, K.J., Rieke, F.: Slow na+ inactivation and variance adaptation in salamander retinal ganglion cells. The Journal of Neuroscience 23(4), 1506–1516 (2003)

    Google Scholar 

  20. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(12), 583–601 (1965)

    Article  Google Scholar 

  21. Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187(3), 517–552 (1966)

    Article  Google Scholar 

  22. Dayan, P., Abbott, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience 15(1), 154–155 (2003)

    Article  Google Scholar 

  23. Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proceedings of the Royal Society of London. Series B. Biological Sciences 202(1148), 409–416 (1978)

    Article  Google Scholar 

  24. Amthor, F.R., Grzywacz, N.M.: Nonlinearity of the inhibition underlying retinal directional selectivity. Visual Neuroscience 66(03), 197–206 (1991)

    Article  Google Scholar 

  25. Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience 17(21), 8621–8644 (1997)

    Google Scholar 

  26. Wohrer, A.: Model and large-scale simulator of a biological retina, with contrast gain control. PhD thesis, Nice (2008)

    Google Scholar 

  27. Beaudoin, D.L., Borghuis, B.G., Demb, J.B.: Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. The Journal of Neuroscience 27(10), 2636–2645 (2007)

    Article  Google Scholar 

  28. Demb, J.B.: Functional circuitry of visual adaptation in the retina. The Journal of Physiology 586(18), 4377–4384 (2008)

    Article  Google Scholar 

  29. Deriche, R.: Recursively implementating the gaussian and its derivatives (1993)

    Google Scholar 

  30. Deriche, R.: Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 78–87 (1990)

    Article  Google Scholar 

  31. Tan, S., Dale, J.L., Johnston, A.: Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging 99(3), 215–228 (2003)

    Article  Google Scholar 

  32. Triggs, B., Sdika, M.: Boundary conditions for young-van vliet recursive filtering. IEEE Transactions on Signal Processing 54(6), 2365–2367 (2006)

    Article  Google Scholar 

  33. Rieke, F.: Temporal contrast adaptation in salamander bipolar cells. The Journal of Neuroscience 21(23), 9445–9454 (2001)

    Google Scholar 

  34. Jarsky, T., Cembrowski, M., Logan, S.M., Kath, W.L., Riecke, H., Demb, J.B., Singer, J.H.: A synaptic mechanism for retinal adaptation to luminance and contrast. The Journal of Neuroscience 31(30), 11003–11015 (2011)

    Article  Google Scholar 

  35. Dunn, F.A., Rieke, F.: Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57(6), 894–904 (2008)

    Article  Google Scholar 

  36. Manookin, M.B., Demb, J.B.: Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50(3), 453–464 (2006)

    Article  Google Scholar 

  37. Zaghloul, K.A., Boahen, K., Demb, J.B.: Contrast adaptation in subthreshold and spiking responses of mammalian y-type retinal ganglion cells. The Journal of Neuroscience 25(4), 860–868 (2005)

    Article  Google Scholar 

  38. Kastner, D.B., Baccus, S.A.: Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nature Neuroscience 14(10), 1317–1322 (2011)

    Article  Google Scholar 

  39. Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B., Dacey, D.M.: Parallel on and off cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29(26), 8372–8387 (2009)

    Article  Google Scholar 

  40. Lee, B.B., Shapley, R.M., Hawken, M.J., Sun, H.: Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. JOSA A 29(2), A223–A232 (2012)

    Google Scholar 

  41. Crook, J.D., Manookin, M.B., Packer, O.S., Dacey, D.M.: Horizontal cell feedback without cone type-selective inhibition mediates red–green color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31(5), 1762–1772 (2011)

    Article  Google Scholar 

  42. Lee, B.B., Kremers, J., Yeh, T.: Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15(01), 161–175 (1998)

    Article  Google Scholar 

  43. Lee, B.B., Dacey, D.M., Smith, V.C., Pokorny, J.: Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences 96(25), 14611–14616 (1999)

    Article  Google Scholar 

  44. Verweij, J., Hornstein, E.P., Schnapf, J.L.: Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23(32), 10249–10257 (2003)

    Google Scholar 

  45. Martínez-Cañada, P., Morillas, C., Nieves, J.L., Pino, B., Pelayo, F.: First stage of a human visual system simulator: The retina. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 118–127. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Martínez-Cañada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martínez-Cañada, P., Morillas, C., Pino, B., Pelayo, F. (2015). Towards a Generic Simulation Tool of Retina Models. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics