Abstract
The retina is one of the most extensively studied neural circuits in the Visual System. Numerous models have been proposed to predict its neural behavior on the response to artificial and natural visual patterns. These models can be considered an important tool for understanding the underlying biophysical and anatomical mechanisms. This paper describes a general-purpose simulation environment that fits to different retina models and provides a set of elementary simulation modules at multiple abstraction levels. The platform can simulate many of the biological mechanisms found in retinal cells, such as signal gathering though chemical synapses and gap junctions, variations in the receptive field size with eccentricity, membrane integration by linear and single-compartment models and short-term synaptic plasticity. A built-in interface with neural network simulators reproduces the spiking output of some specific cells, such as ganglion cells, and allows integration of the platform with models of higher visual areas. We used this software to implement whole retina models, from photoreceptors up to ganglion cells, that reproduce contrast adaptation and color opponency mechanisms in the retina. These models were fitted to published electro-physiological data to show the potential of this tool to generalize and adapt itself to a wide range of retina models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gollisch, T., Meister, M.: Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2), 150–164 (2010)
Lee, B.B., Martin, P.R., Grünert, U.: Retinal connectivity and primate vision. Progress in Retinal and Eye Research 29(6), 622–639 (2010)
Beeman, D.: History of neural simulation software. In: 20 Years of Computational Neuroscience, pp. 33–71. Springer (2013)
Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)
Hines, M.L., Carnevale, N.T.: The neuron simulation environment. Neural Computation 9(6), 1179–1209 (1997)
Benoit, A., Caplier, A., Durette, B., Hérault, J.: Using human visual system modeling for bio-inspired low level image processing. Computer Vision and Image Understanding 114(7), 758–773 (2010)
Wohrer, A., Kornprobst, P.: Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)
Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)
Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Ros, E., Fernández, E.: A design framework to model retinas. Biosystems 87(2), 156–163 (2007)
Hérault, J.: A model of colour processing in the retina of vertebrates: From photoreceptors to colour opposition and colour constancy phenomena. Neurocomputing 12(2), 113–129 (1996)
De Valois, R.L., De Valois, K.K.: A multi-stage color model. Vision research 33(8), 1053–1065 (1993)
Andreou, A.G., Boahen, K.A.: A contrast sensitive silicon retina with reciprocal synapses. Advances in Neural Information Processing Systems (NIPS) 4, 764–772 (1991)
Mead, C.: Neuromorphic electronic systems. Proceedings of the IEEE 78(10), 1629–1636 (1990)
Ozuysal, Y., Baccus, S.A.: Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73(5), 1002–1015 (2012)
Mante, V., Frazor, R.A., Bonin, V., Geisler, W.S., Carandini, M.: Independence of luminance and contrast in natural scenes and in the early visual system. Nature Neuroscience 8(12), 1690–1697 (2005)
Baccus, S.A., Meister, M.: Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5), 909–919 (2002)
Kim, K.J., Rieke, F.: Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. The Journal of Neuroscience 21(1), 287–299 (2001)
Mante, V., Bonin, V., Carandini, M.: Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58(4), 625–638 (2008)
Kim, K.J., Rieke, F.: Slow na+ inactivation and variance adaptation in salamander retinal ganglion cells. The Journal of Neuroscience 23(4), 1506–1516 (2003)
Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(12), 583–601 (1965)
Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187(3), 517–552 (1966)
Dayan, P., Abbott, L.F.: Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience 15(1), 154–155 (2003)
Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proceedings of the Royal Society of London. Series B. Biological Sciences 202(1148), 409–416 (1978)
Amthor, F.R., Grzywacz, N.M.: Nonlinearity of the inhibition underlying retinal directional selectivity. Visual Neuroscience 66(03), 197–206 (1991)
Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience 17(21), 8621–8644 (1997)
Wohrer, A.: Model and large-scale simulator of a biological retina, with contrast gain control. PhD thesis, Nice (2008)
Beaudoin, D.L., Borghuis, B.G., Demb, J.B.: Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. The Journal of Neuroscience 27(10), 2636–2645 (2007)
Demb, J.B.: Functional circuitry of visual adaptation in the retina. The Journal of Physiology 586(18), 4377–4384 (2008)
Deriche, R.: Recursively implementating the gaussian and its derivatives (1993)
Deriche, R.: Fast algorithms for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 78–87 (1990)
Tan, S., Dale, J.L., Johnston, A.: Performance of three recursive algorithms for fast space-variant gaussian filtering. Real-Time Imaging 99(3), 215–228 (2003)
Triggs, B., Sdika, M.: Boundary conditions for young-van vliet recursive filtering. IEEE Transactions on Signal Processing 54(6), 2365–2367 (2006)
Rieke, F.: Temporal contrast adaptation in salamander bipolar cells. The Journal of Neuroscience 21(23), 9445–9454 (2001)
Jarsky, T., Cembrowski, M., Logan, S.M., Kath, W.L., Riecke, H., Demb, J.B., Singer, J.H.: A synaptic mechanism for retinal adaptation to luminance and contrast. The Journal of Neuroscience 31(30), 11003–11015 (2011)
Dunn, F.A., Rieke, F.: Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57(6), 894–904 (2008)
Manookin, M.B., Demb, J.B.: Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50(3), 453–464 (2006)
Zaghloul, K.A., Boahen, K., Demb, J.B.: Contrast adaptation in subthreshold and spiking responses of mammalian y-type retinal ganglion cells. The Journal of Neuroscience 25(4), 860–868 (2005)
Kastner, D.B., Baccus, S.A.: Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nature Neuroscience 14(10), 1317–1322 (2011)
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B., Dacey, D.M.: Parallel on and off cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29(26), 8372–8387 (2009)
Lee, B.B., Shapley, R.M., Hawken, M.J., Sun, H.: Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. JOSA A 29(2), A223–A232 (2012)
Crook, J.D., Manookin, M.B., Packer, O.S., Dacey, D.M.: Horizontal cell feedback without cone type-selective inhibition mediates red–green color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31(5), 1762–1772 (2011)
Lee, B.B., Kremers, J., Yeh, T.: Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15(01), 161–175 (1998)
Lee, B.B., Dacey, D.M., Smith, V.C., Pokorny, J.: Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences 96(25), 14611–14616 (1999)
Verweij, J., Hornstein, E.P., Schnapf, J.L.: Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23(32), 10249–10257 (2003)
Martínez-Cañada, P., Morillas, C., Nieves, J.L., Pino, B., Pelayo, F.: First stage of a human visual system simulator: The retina. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 118–127. Springer, Heidelberg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Martínez-Cañada, P., Morillas, C., Pino, B., Pelayo, F. (2015). Towards a Generic Simulation Tool of Retina Models. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-18914-7_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18913-0
Online ISBN: 978-3-319-18914-7
eBook Packages: Computer ScienceComputer Science (R0)