Skip to main content

MBMEDA: An Application of Estimation of Distribution Algorithms to the Problem of Finding Biological Motifs

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

  • 3170 Accesses

Abstract

In this work we examine the problem of finding biological motifs in DNA databases. The problem was solved by applying MBMEDA, which is a evolutionary method based on the Estimation of Distribution Algorithm (EDA). Though it assumes statistical independence between the main variables of the problem, results were quite satisfactory when compared with those obtained by other methods; in some cases even better. Its performance was measured by using two metrics: precision and recall, both taken from the field of information retrieval. The comparison involved searching a motif on two types of DNA datasets: synthetic and real. On a set a five real databases the average values of precision and recall were 0.866 and 0.798, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stormo, G.: DNA binding sites: representation and discovery. Bioinformatics 16(1), 16–23 (2000)

    Article  Google Scholar 

  2. Liu, X.: Bioprospector: Discovering Conserved DNa Motifs in Upstream Regulatory Regions of Co-expressed Genes. In: Pacific Symposium on Biocomputing, vol. 6, pp. 127–138 (2001)

    Google Scholar 

  3. Hertz, Z., Stormo, G.: Identifying DNA and Protein Patterns with Statistically Significant Aligments of Multiple Sequences. Bioinformatics 15(7), 563–577 (1999)

    Article  Google Scholar 

  4. Eiben, E. , Smith, J. : What Is an Evolutionary Algorithm. Introduction to Evolutionary Computing. Springer, New York (2003)

    Google Scholar 

  5. Endika, B., Larrañaga, P., Bloch, I., Perchant, A.: Estimation of Distribution Algorithms: a New Evolutionary Computation Approach for Graph Matching Problems. Energy Minimization Methods in Computer Vision and Pattern Recognition, 454–469 (2001)

    Google Scholar 

  6. Gang, L., Chan, T., Leung, K., Hong, K.: An Estimation of Distribution Algorithm for Motif Discovery. Evolutionary Computation, 2411–2418 (2008)

    Google Scholar 

  7. Wei, Z.: GAME: Detecting Cis-regulatory Elements Using a Genetic Algorithm. Bioinformatics 22(13), 1577–1584 (2006)

    Article  Google Scholar 

  8. Sinha, S.: On counting position weight matrix matches in a sequence, with application to discriminative motif finding. Bioinformatics 22(14), 454–463 (2006)

    Article  Google Scholar 

  9. Schneider, T., Stormo, G., Gold, L., Ehrenfeucht, A.: Information Content of Binding Sites on Nucleotide Sequences. Journal of Molecular Biology 188(3), 415–431 (1986)

    Article  Google Scholar 

  10. Shannon, C.: A Mathematical Theory of Communication. Bell Syst., Techn. J. 27, 379–423 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jordán, I., Jordán, C.: Aplicación de Algoritmos Evolutivos a la búsqueda de motivos biológicos en bases de regiones promotoras de ADN. Revista Matemática ICM, 33–42 (2012)

    Google Scholar 

  12. Fogel, D.: Evolutionary Computation: Toward a new Philosophy in Machine Intelligence. IEEE Press (1995)

    Google Scholar 

  13. Manning, D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval, pp. 151–158. Cambridge UP, New York (2008)

    Book  MATH  Google Scholar 

  14. Schneider, T., Stephens, R.: Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Res. 18(20), 6097–6100 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos I. Jordán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jordán, C.I., Jordán, C.J. (2015). MBMEDA: An Application of Estimation of Distribution Algorithms to the Problem of Finding Biological Motifs. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics