Skip to main content

Robust Linear Longitudinal Feedback Control of a Flapping Wing Micro Air Vehicle

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

This paper falls under the idea of introducing biomimetic miniature air vehicles in ambient assisted living and home health applications. The concepts of active disturbance rejection control and flatness based control are used in this paper for the trajectory tracking tasks in the flapping-wing miniature air vehicle (FWMAV) time-averaged model. The generalized proportional integral (GPI) observers are used to obtain accurate estimations of the flat output associated phase variables and of the time-varying disturbance signals. This information is used in the proposed feedback controller in (a) approximate, yet close, cancelations, as lumped unstructured time-varying terms, of the influence of the highly coupled nonlinearities and (b) the devising of proper linear output feedback control laws based on the approximate estimates of the string of phase variables associated with the flat outputs simultaneously provided by the disturbance observers. Numerical simulations are provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellington, C.P.: The novel aerodynamics of insect flight: Applications to microair vehicles. The Journal of Experimental Biology 202, 3439–3448 (1999)

    Google Scholar 

  2. de Clerq, K.M.E., de Kat, R., Remes, B., van Oudheusden, B.W., Bijl, H.: Aerodynamic experiments on delfly ii: unsteady lift enhancement. In: Proceedings of the 2009 European Micro-air Vehicle Conference and Competition 2009, pp. 255–262 (2009)

    Google Scholar 

  3. Conn, A., Burgess, S., Hyde, R., Ling, C.S.: From natural flyers to the mechanical realization of a flapping wing micro air vehicle. In: Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, pp. 439–444 (2006)

    Google Scholar 

  4. Fenelon, M.A.A.: Biomimetic flapping wing aerial vehicle. In: Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetics, pp. 1053–1058 (2009)

    Google Scholar 

  5. Fernández-Caballero, A., Latorre, J.M., Pastor, J.M., Fernández-Sotos, A.: Improvement of the elderly quality of life and care through smart emotion regulation. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 348–355. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Castillo, J.C., Carneiro, D., Serrano-Cuerda, J., Novais, P., Fernández-Caballero, A., Neves, J.: A multi-modal approach for activity classification and fall detection. International Journal of Systems Science 45, 810–824 (2014)

    Article  Google Scholar 

  7. Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal behavioral analysis for non-invasive stress detection. Expert Systems with Applications 39, 13376–13389 (2012)

    Article  Google Scholar 

  8. Oliver, M., Montero, F., Fernández-Caballero, A., González, P., Molina, J.P.: RGB-D assistive technologies for acquired brain injury: description and assessment of user experience. Expert Systems (2014), doi:10.1111/exsy.12096

    Google Scholar 

  9. Deng, X., Schenato, L., Sastry, S.: Model identification and attitude control scheme for a micromechanical flying insect. In: International Conference on Control, Automation, Robotic and Vision, pp. 1007–1012 (2002)

    Google Scholar 

  10. Schenato, L., Wu, W.-C., Sastry, S.: Attitude control for a micromechanical flying insect via sensor output feedback. IEEE Transaction on Robotics and Automation 20, 93–106 (2004)

    Article  Google Scholar 

  11. Campolo, D., Barbera, G., Schenato, L., Pi, L., Deng, X., Guglielmelli, E.: Attitude stabilization of a biologically inspired robotic housefly via dynamic multimodal attitude estimation. Advanced Robotics 23, 955–977 (2009)

    Article  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer (1990)

    Google Scholar 

  13. Sanders, J.A., Verhulst, F.: Averaging Methods in Non-Linear Dynamical Systems. Springer (1985)

    Google Scholar 

  14. Deng, X., Schenato, L., Wu, W.-C., Sastry, S.: Flapping flight for biomimetic robotic insects: part II–flight control design. IEEE Transactions on Robotics 22, 789–803 (2006)

    Article  Google Scholar 

  15. Rifaï, H., Marchand, N., Poulin-Vittrant, G.: Bounded control of an underactuated biomimetic aerial vehicle–Validation with robustness tests. Robotics and Autonomous Systems 60, 1165–1178 (2012)

    Article  Google Scholar 

  16. Khan, Z.A., Agrawal, S.K.: Control of longitudinal flight dynamics of a flapping-wing micro air vehicle using time-averaged model and differential flatness based controller. In: Proceedings of the 2007 American Control Conference, pp. 5284–5289 (2007)

    Google Scholar 

  17. Han, J.: From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics 56, 900–906 (2009)

    Article  Google Scholar 

  18. Radke, A., Gao, Z.: A survey of state and disturbance observers for practicioners. In: Proceedings of the 2006 American Control Conference, pp. 5183–5188 (2006)

    Google Scholar 

  19. Qing, Z., Gao, Z.: On practical applications of active disturbance rejection control. In: Proceedings of the 29th Chinese Control Conference, pp. 6095–6100 (2010)

    Google Scholar 

  20. Luviano-Juárez, A., Cortés-Romero, J., Sira-Ramírez, H.: Synchronization of chaotic oscillators by means of generalized proportional integral observers. International Journal of Bifurcation and Chaos 20, 1509–1517 (2010)

    Article  MATH  Google Scholar 

  21. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of nonlinear systems: Introductory theory and examples. International Journal of Control 61, 1327–1361 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sira-Ramírez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekkert Inc. (2004)

    Google Scholar 

  23. Sira-Ramírez, H., Núñez, C., Visairo, N.: Robust sigma-delta generalized proportional integral observer based on a ’buck’ converter with uncertain loads. International Journal of Control 83, 1631–1640 (2009)

    Article  Google Scholar 

  24. Morales, R., Sira-Ramírez, H., Somolinos, J.A.: Robust control of underactuated wheeled mobile manupulators using GPI disturbance observers. Multibody Systems Dynamics 32, 511–533 (2014)

    Article  MATH  Google Scholar 

  25. Morales, R., Sira-Ramírez, H., Somolinos, J.A.: Linear active disturbance rejection control of the hovercraft vessel model. Ocean Engineering 96, 100–108 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Belmonte, L.M., Morales, R., Fernández-Caballero, A., Somolinos, J.A. (2015). Robust Linear Longitudinal Feedback Control of a Flapping Wing Micro Air Vehicle. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_47

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics