Skip to main content

A Volumetric Radial LBP Projection of MRI Brain Images for the Diagnosis of Alzheimer’s Disease

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

Abstract

Alzheimer’s Disease (AD) is nowadays the most common type of dementia, with more than 35.6 million people affected, and 7.7 million new cases every year. Magnetic Resonance Imaging (MRI) is a fairly widespread tool used in clinical practice, and has repeatedly proven its utility in the diagnosis of AD. Therefore a number of automatic methods have been developed for the processing of MR images. In this work, a new algorithm that projects the three-dimensional image onto two-dimensional maps using Local Binary Patterns (LBP) is presented. The algorithm yields visually-assessable maps that contain the textural information and achieves up to a 90.5% accuracy in a differential diagnosis task (AD vs controls), which proves that the textural information retrieved by our methodology is significantly linked to the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schroeter, M.L., Stein, T., Maslowski, N., Neumann, J.: Neural correlates of alzheimers disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. NeuroImage 47(4), 1196–1206 (2009)

    Article  Google Scholar 

  2. Ayache, N.: Analyzing 3D Images of the Brain. NeuroImage 4(3), S34–S35 (1996)

    Google Scholar 

  3. Shiino, A., Watanabe, T., Maeda, K., Kotani, E., Akiguchi, I., Matsuda, M.: Four subgroups of Alzheimer’s disease based on patterns of atrophy using VBM and a unique pattern for early onset disease. NeuroImage 33(1), 17–26 (2006)

    Article  Google Scholar 

  4. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., Killiany, R., et al.: Reliability of mri-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 32(1), 180–194 (2006)

    Article  Google Scholar 

  5. Kovalev, V.A., Kruggel, F., Gertz, H.J., von Cramon, D.Y.: Three-dimensional texture analysis of mri brain datasets. IEEE Transactions on Medical Imaging 20(5), 424–433 (2001)

    Article  Google Scholar 

  6. Fan, Y., Rao, H., Hurt, H., Giannetta, J., Korczykowski, M., Shera, D., Avants, B.B., Gee, J.C., Wang, J., Shen, D.: Multivariate examination of brain abnormality using both structural and functional MRI. NeuroImage 36(4), 1189–1199 (2007)

    Article  Google Scholar 

  7. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.: Lvq-SVM based CAD tool applied to structural MRI for the diagnosis of the alzheimer’s disease. Pattern Recognition Letters 34(14), 1725–1733 (2013)

    Article  Google Scholar 

  8. Yoon, U., Lee, J.M., Im, K., Shin, Y.W., Cho, B.H., Kim, I.Y., Kwon, J.S., Kim, S.I.: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage 34(4), 1405–1415 (2007)

    Article  Google Scholar 

  9. Unay, D., Ekin, A., Cetin, M., Jasinschi, R., Ercil, A.: Robustness of local binary patterns in brain mr image analysis. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (August 2007)

    Google Scholar 

  10. Martinez-Murcia, F., Górriz, J., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M., Initiative, P.P.M.: Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of parkinsonism. Medical Physics 41(1), 012502 (2014)

    Google Scholar 

  11. Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J., Alvarez Illán, I., Salas-González, D., Segovia, F.: Alzheimer’s Disease Neuroimaging Initiative. Projecting mri brain images for the detection of alzheimer’s disease. Stud. Health Technol. Inform. 207, 225–233 (2015)

    Google Scholar 

  12. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)

    Article  Google Scholar 

  13. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  14. Chetverikov, D., Peteri, R.: A brief survey of dynamic texture description and recognition. In: Proc. Intl. Conf. Computer Recognition Systems, pp. 17–26. Springer (2005)

    Google Scholar 

  15. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  16. Paulhac, L., Makris, P., Ramel, J.-Y.: Comparison between 2d and 3d local binary pattern methods for characterisation of three-dimensional textures. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2008. LNCS, vol. 5112, pp. 670–679. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Montagne, C., Kodewitz, A., Vigneron, V., Giraud, V., Lelandais, S.: 3D Local Binary Pattern for PET image classification by SVM, Application to early Alzheimer disease diagnosis. In: 6th International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS 2013), Barcelona, Spain, pp. 145–150 (February 2013)

    Google Scholar 

  18. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press (2007)

    Google Scholar 

  19. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, Inc., New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martinez-Murcia, F.J., Ortiz, A., Górriz, J.M., Ramírez, J., Illán, I.A. (2015). A Volumetric Radial LBP Projection of MRI Brain Images for the Diagnosis of Alzheimer’s Disease. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics