Skip to main content

Automated Diagnosis of Alzheimer’s Disease by Integrating Genetic Biomarkers and Tissue Density Information

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

Computer aided diagnosis (CAD) constitutes an important tool for the early diagnosis of Alzheimer’s Disease (AD), which, in turn, allows the application of treatments that can be simpler and more likely to be effective. This paper presents a straightfoward approach to determine the most discrimanative brain regions, defined by the Automated Anatomical Labelling (AAL), based on the measurements of the tissue density at the different brain areas. Statistical analysis of GM and WM densities reveal significant differences between controls (CN) and AD at specific brain areas associated to tissue density diminishing due to neurodegeneration. The proposed method has been evaluated using a large dataset from the Alzheimer’s disease Neuroimaging Initiative (ADNI). Classification results assessed by cross-validation proved that computed WM/GM densities are discriminative enough to differentiate between CN/AD. Moreover, fusing density measurements with ApoE genetic information help to increase the diagnosis accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Álvarez, I., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Lopez, M.M., Segovia, F., Chaves, R., Gomez-Rio, M., Garcia-Puntonet, C.: 18f-fdg pet imaging analysis for computer aided Alzheimer’s diagnosis. Information Sciences 184(4), 196–903 (2011)

    Google Scholar 

  2. Alzheimer’s Disease Neuroimaging Initiative (2014), http://adni.loni.ucla.edu/ (accessed March 10, 2014)

  3. Ashburner, J., Group, T.F.M: SPM8. Functional Imaging Laboratory, Institute of Neurology, 12, Queen Square, Lonon WC1N 3BG, UK (August 2011)

    Google Scholar 

  4. Chyzhyk, D., Graña, M., Savio, A., Maiora, J.: Hybrid dendritic computing with kernel-lica applied to Alzheimer’s disease detection in mri. Neurocomputing 75(1), 72–77 (2012)

    Article  Google Scholar 

  5. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M., Chupin, M., Benali, H., Colliot, O.: Alzheimer’s Disease Neuroimaging Initiative. Automatic Classification of patients with Alzheimer’s Disease from Structural MRI: A Comparison of ten Methods Using the Adni Database 56(2), 766–781 (2010)

    Google Scholar 

  6. Górriz, J.M., Segovia, F., Ramírez, J., Lassl, A., Salas-González, D.: Gmm based spect image classification for the diagnosis of Alzheimer’s disease. Applied Soft Computing 11, 2313–2325 (2011)

    Article  Google Scholar 

  7. Liu, M., Zhang, D., Shen, D.: Disease Neuroimaging Initiative. Ensemble sparse classification of alzheimer’s disease. Ensemble sparse classification of alzheimer’s disease 60(2), 1106–1116 (2012)

    MathSciNet  Google Scholar 

  8. López, M., Ramírez, J., Górriz, J.M., Álvarez, I., Salas-González, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M.: Principal component analysis-based techniques and supervised classification schemes for the early detection of Alzheimer’s disease. Neurocomputing 74(8), 1260–1271 (2011)

    Article  Google Scholar 

  9. Paul Murphy, M., LeVine, H.: Alzheimer’s disease and the β-amyloid peptide. Journal of Alzheimer’s Disease 19(1), 311–318 (2010)

    Google Scholar 

  10. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: LVQ-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease. Pattern Recognition Letters 34(14), 1725–1733 (2013)

    Article  Google Scholar 

  11. Ortiz, A., Górriz, J.M., Ramírez, J., Martínez-Murcia, F.J.: Automatic roi selection in structural brain mri using som 3d projection. PLOS One 9(4) (2014)

    Google Scholar 

  12. Ramirez, J., Chaves, R., Gorriz, J.M., Lopez, M., Alvarez, I.A., Salas-Gonzalez, D., Segovia, F., Padilla, P.: Computer aided diagnosis of the Alzheimer’s disease combining spect-based feature selection and random forest classifiers. In: Proc. IEEE Nuclear Science Symp. Conf. Record (NSS/MIC), pp. 2738–2742 (2009)

    Google Scholar 

  13. Segovia, F., Górriz, J.M., Ramírez, J., Salas-González, D., Álvarez, I., López, M., Chaves, R.: The Alzheimer’s Disease Neuroimaging Initiative. A comparative study of the feature extraction methods for the diagnosis of Alzheimer’s disease using the adni database. Neurocomputing 75, 64–71 (2012)

    Article  Google Scholar 

  14. Alzheimer’s Disease Society. Factsheet: Drug treatments for alzheimer’s disease (2014)

    Google Scholar 

  15. Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A., Williams Jr., R.M.: Adjustment During Army Life, vol. 1. Princeton University Press, Princeton (1949)

    Google Scholar 

  16. Structural Brain Mapping Group. Department of Psychiatry (2014), http://dbm.neuro.uni-jena.de/vbm8/VBM8-Manual.pdf (accessed March 10, 2014)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ortiz, A. et al. (2015). Automated Diagnosis of Alzheimer’s Disease by Integrating Genetic Biomarkers and Tissue Density Information. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics