Skip to main content

The Koniocortex-Like Network: A New Biologically Plausible Unsupervised Neural Network

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

In this paper we present a new unsupervised neural network whose architecture resembles the koniocortex, the first cortical layer receiving sensory inputs. For easiness, its properties were incorporated in a step by step manner along successive network versions. In some cases, the version improvement consists in the replacement of a non-biological property by a biologically plausible one. Initially (version 0) the network was merely an scaffold implementing the Bayes Decision Rule. The first network version incorporated metaplasticity and intrinsic plasticity, but neural competition was not biological. In a second version, competition naturally occurred due to the interplay between lateral inhibition and homeostatic properties. Finally, in the koniocortex-like network, competition and pattern classification emerges naturally due to the interplay of inhibitory interneurons and previous version’s properties. An example of numerical character recognition is presented for illustrating the main characteristics of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abraham, W.C., Bear, M.F.: Metaplasticity: the plasticity of synaptic plasticity. Trends in Neuroscience 19, 126–130 (1996)

    Article  Google Scholar 

  2. Abraham, W.C., Tate, W.P.: Metaplasticity: a new vista across the field of synaptic plasticity. Progress in Neurobiology 52, 303–323 (1997)

    Article  Google Scholar 

  3. Artola, A., Brocher, S., Singer, W.: Different voltage-dependent threshold for inducing long-term depression and long-term potentiation in slices of rat visual córtex. Nature 347, 69–72 (1990)

    Article  Google Scholar 

  4. Desai, N.S.: Homeostatic plasticity in the CNS: synaptic and intrinsic forms. Journal of Physiology 97(4-6), 391–402 (2003)

    Google Scholar 

  5. Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature Neurosciences 2, 515–520 (1999)

    Article  Google Scholar 

  6. Diamond, M.E., Armstrong-James, M., Ebner, F.F.: Experience-dependent plasticity in adult rat barrel cortex. Proceedings of the National Academy of Sciences USA 90, 2082–2086 (1993)

    Article  Google Scholar 

  7. Ferster, D., Sooyoung Chung, S., Wheat, H.: Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 80(6571), 249–252 (1996)

    Article  Google Scholar 

  8. Fleidervish, I.A., Binshtok, A.M., Gutnick, M.J.: Functionally Distinct NMDA Receptors Mediate Horizontal Connectivity within Layer IV of Mouse Barrel Cortex. Neuron 21(5), 1055–1065 (1998)

    Article  Google Scholar 

  9. Hirsch, J.A.: Synaptic integration in layer IV of the ferret striate cortex. Journal of Physiology 483(1), 183–199 (1995)

    Article  Google Scholar 

  10. Kinto, E.A., Del Moral Hernandez, E., Marcano, A., Ropero Peláez, F.J.: A Preliminary Neural Model for Movement Direction Recognition Based on Biologically Plausible Plasticity Rules. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 628–636. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Miller, K.D., Pinto, D.J., Simons, D.J.: Processing in layer IV of neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology 11, 488–497 (2001)

    Article  Google Scholar 

  12. Peláez, F.J.R., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing 114, 24–31 (2013)

    Article  Google Scholar 

  13. Peláez, F.J.R., Godoi, A.C.: From Forced to Natural Competition in a Biologically Plausible Neural Network. Advances in Intelligent Systems and Computing 198, 95–104 (2013)

    Google Scholar 

  14. Peláez, F.J.R., Godoy Simoes, M.: A computational model of synaptic metaplasticity. In: Proceedings of the International Joint Conference of Neural Networks 1999, Washington DC (1999)

    Google Scholar 

  15. Peláez, F.J.R., Ranvaud, R., Szafir, S., Ramírez-Fernández, F.J.: The illusion of movement in static images analyzed with a biologically plausible unsupervised neural network model. In: Proceedings of Brain Inspired Cognitive Systems, BICS 2008, São Luiz (2008)

    Google Scholar 

  16. Ropero Peláez, F.J., Santana, L.G.R.: Doman’s inclined floor method for early motor organization simulated with a four neurons robot. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 109–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Ropero Peláez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Peláez, F.J.R., Andina, D. (2015). The Koniocortex-Like Network: A New Biologically Plausible Unsupervised Neural Network. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics