Skip to main content

Decoding of Imaginary Motor Movements of Fists Applying Spatial Filtering in a BCI Simulated Application

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

This work presents a study that evaluates different scenarios of preprocessing and processing of EEG registers, with the aim to predict fist imaginary movements utilizing the data of the EEG Motor Movement/Imaginary Dataset. Three types of imaginary fist movements have been decoded: sustained opening and closing of right fist, sustained opening and closing of left fist and rest. Initially, the registers were band-pass filtered to separate frequency ranges given by mu rhythms (7.5-12.5 Hz), beta rhythms (12.5-30 Hz), mu&beta rhythms, and a broad range of 0.5-30 Hz. Afterward, the signals of the separated subbands were epoched in time windows of 0-0.5, 0-1, 0-1.5 and 0-2 seconds, as well as preprocessed with two techniques of spatial filtering: common spatial patterns and independent component analysis. In both cases, a set of selected channels was established for feature extraction, by calculation of the logarithms of the variance in the time series corresponding to each preprocessed and selected channel. The classification stage was based on linear discriminant analysis and support vector machines. The results showed that the combination given by common spatial patterns and support vector machines allowed to reach a mean decoding accuracy close to 99.9%, where epoching and filtering to separate subbands did not influence the results in a noticeable way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sanei, S.: Adaptive Processing of Brain Signals, 1st edn., pp. 295–324. John Wiley & Sons (2013)

    Google Scholar 

  2. Hurtado-Rincón, J., Rojas-Jaramillo, S., Ricardo-Céspedes, Y., Alvarez-Meza, A.M., Castellanos-Domínguez, G.: Motor Imagery Classification using Feature Relevance Analysis: An Emotiv-based BCI System. In: XIX Symposium on Image, Signal Processing and Artificial Vision (STSIVA 2014), September 17-19 (2014)

    Google Scholar 

  3. Krusienski, D.J., McFarland, D.J., Wolpaw, J.R.: Value of amplitude, phase, and coherence features for a sensorimotor rhythm-based braincomputer interface. Brain Research Bulletin 87, 130–134 (2012)

    Article  Google Scholar 

  4. Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., Hallett, M.: Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG. Clin. Neurophysiol. 118, 2637–2655 (2007)

    Article  Google Scholar 

  5. Rejer, I.: EEG feature selection for BCI based on motor imaginary task. Foundations of Computing and Decision Sciences 37, 283–292 (2012)

    Article  Google Scholar 

  6. Liu, G., Huang, G., Meng, J., Zhu, X.: A frequency-weighted method combined with Common Spatial Patterns for electroencephalogram classification in braincomputer interface. Biomedical Signal Processing and Control 5, 174–180 (2010)

    Article  Google Scholar 

  7. Mousavi, E.A., Maller, J.J., Fitzgerald, P.B., Lithgow, B.J.: Wavelet Common Spatial Pattern in asynchronous offline brain computer interfaces. Biomedical Signal Processing and Control 6, 121–128 (2011)

    Article  Google Scholar 

  8. Asensio-Cubero, J., Gan, J.Q., Palaniappan, R.: Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing. Biomedical Signal Processing and Control 8, 772–778 (2013)

    Article  Google Scholar 

  9. Velásquez-Martínez, L.F., Álvarez-Meza, A.M., Castellanos-Domínguez, C.G.: Motor Imagery Classification for BCI Using Common Spatial Patterns and Feature Relevance Analysis. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part II. LNCS, vol. 7931, pp. 365–374. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Kanoh, S., Miyamoto, K., Yoshinobu, T.: Generation of Spatial Filters by ICA for Detecting Motor-related Oscillatory EEG. In: 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, August 28- September 1, pp. 1703–1706 (2012)

    Google Scholar 

  11. Wang, Y., Wang, Y.T., Jung, T.P.: Translation of EEG Spatial Filters from Resting to Motor Imagery Using Independent Component Analysis. PLoS One 7, e37665 (2012)

    Google Scholar 

  12. Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004)

    Article  Google Scholar 

  13. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 20, e215–e220 (2000)

    Google Scholar 

  14. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 134, 9–21 (2004)

    Article  Google Scholar 

  15. Alomari, M.H., Samaha, A., AlKamha, K.: Automated Classification of L/R Hand Movement EEG Signals using Advanced Feature Extraction and Machine Learning (IJACSA) International Journal of Advanced Computer Science and Applications 4, 207–212 (2013)

    Google Scholar 

  16. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  17. Jeona, Y., Namb, C.S., Kimc, Y.J., Whangd, M.C.: Event-related (De)synchronization (ERD/ERS) during motor imagery tasks: Implications for braincomputer interfaces. International Journal of Industrial Ergonomics 41, 428–436 (2011)

    Article  Google Scholar 

  18. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Mueller, K.R.: Optimizing Spatial Filters for Robust EEG Single-Trial Analysis. IEEE Signal Processing Magazine 25, 41–56 (2008)

    Article  Google Scholar 

  19. Khan, Y.U., Sepulveda, F.: Brain-computer interface for single-trial eeg classification for wrist movement imagery using spatial filtering in the gamma band. IET Signal Process. 4, 510–517 (2010)

    Article  Google Scholar 

  20. Mueller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–798 (1999)

    Article  Google Scholar 

  21. Liao, K., Xiao, R., Gonzalez, J., Ding, L.: Decoding Individual Finger Movements from One Hand Using Human EEG Signals. PLOS ONE 9, e85192, 1–12 (2014)

    Google Scholar 

  22. Huang, D., Lin, P., Fei, D.Y., Chen, X., Bai, O.: Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control. J. Neural. Eng. 6 (2009)

    Google Scholar 

  23. Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Google Scholar 

  24. Girden, E.R.: ANOVA: Repeated Measures, vol. 84. SAGE Publications (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Boelts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Boelts, J., Cerquera, A., Ruiz-Olaya, A.F. (2015). Decoding of Imaginary Motor Movements of Fists Applying Spatial Filtering in a BCI Simulated Application. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics