Skip to main content

Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

In the last years there has been a noticeable progress in motor learning, neuroplasticity and functional recovery after the occurrence of brain lesion. Rehabilitation of motor function has been associated to motor learning that occurs during repetitive, frequent and intensive training. Neuro-rehabilitation is based on the assumption that motor learning principles can be applied to motor recovery after injury, and that training can lead to permanent improvements of motor functions in patients with muscle deficits. The emergent research field of Rehabilitation Engineering may provide promise technologies for neuro-rehabilitation therapies, exploiting the motor learning and neural plasticity concepts. Among those technologies, the FES-assisted systems could provide repetitive training-based therapies and have been developed to aid or control the upper and lower limbs movements in response to user’s intentionality. Surface electromyography (SEMG) reflects directly the human motion intention, so it can be used as input information to control an active FES-assisted system. The present work describes a neurorehabilitation platform at the upper-limb level, based on bilateral coordination training (i.e. mirror movements with the unaffected arm) using a close-loop active FES system controlled by user. In this way, this work presents a novel myoelectric controller for decoding movements of user to be employed in a neurorehabilitation platform. It was carried out a set of experiments to validate the myoelectric controller in classification of seven human upper-limb movements, obtaining an average classification error of 4.3%. The results suggest that the proposed myoelectric pattern recognition method may be applied to control close-loop FES system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietz, V., Nef, T., Rymer, W.Z.: Neurorehabilitation technology. Springer (2012)

    Google Scholar 

  2. Sharma, N., Classen, J., Cohen, L.G.: Neural plasticity and its contribution to functional recovery. In: Handbook of Clinical Neurology, vol. 110, pp. 3–12 (2013)

    Google Scholar 

  3. Moller, A.R.: Neural plasticity and disorders of the nervous system. Cambridge University Press (2006)

    Google Scholar 

  4. Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clinical Neurophysiology 124, 2008–2015 (2013)

    Article  Google Scholar 

  5. Sheffler, L., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35, 562–590 (2007)

    Article  Google Scholar 

  6. Doucet, B.M., Lamb, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. The Yale Journal of Biology and Medicine 85, 201–215 (2012)

    Google Scholar 

  7. Hamid, S., Hayek, R.: Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur. Spine J. 17, 1256–1269 (2008)

    Article  Google Scholar 

  8. Sabut, S.K., Sikdar, C., Mondal, R., Kumar, R., Mahadevappa, M.: Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Disability and Rehabilitation 32(19), 1594–1603 (2010)

    Article  Google Scholar 

  9. Popovic, L., Jorgovanovic, N., Ilic, V., Dosen, S., Keller, T., Popovic, M.B., Popovic, D.B.: Electrical stimulation for the suppression of pathological tremor. Med. Biol. Eng. Comput. 49, 1187–1193 (2011)

    Article  Google Scholar 

  10. Wolczowski, A., Kurzynski, M.: Human-machine interface in bioprosthesis control using EMG signal classification. Expert Systems 27, 53–70 (2010)

    Article  Google Scholar 

  11. Farina, D., Negro, F.: Accessing the neural drive to muscle and translation to neurorehabilitation technologies. IEEE Reviews in Biomedical Engineering 5, 3–14 (2012)

    Article  Google Scholar 

  12. Oskoei, M.A., Hu, H.: Myoelectric control systems–A survey. Biomedical Signal Processing and Control 2, 275–294 (2007)

    Article  Google Scholar 

  13. Jamison, J.C., Caldwell, G.E.: Muscle synergies and isometric torque production: Influence of supination and pronation level on elbow flexion. J. Neurophys. 70(3), 947–960 (1993)

    Google Scholar 

  14. Englehart, K., Hudgins, B.: A robust real-time control scheme for multifunctionmyoelectric control. IEEE Trans. Biomed. Eng. 50(7), 848–854 (2003)

    Article  Google Scholar 

  15. Tarkka, I.M., Pitkanen, K., Popovic, D.J., Vanninen, R., Kononen, M.: Functional Electrical Therapy for Hemiparesis Alleviates Disability and Enhances Neuroplasticity. J. Exp. Med. 225, 71–76 (2011)

    Google Scholar 

  16. Kimberley, T.J., Lewis, S.M., Auerbach, E.J., Dorsey, L.L., Lojovich, J.M., Carey, J.R.: Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Experimental Brain Research 154, 450–460 (2004)

    Article  Google Scholar 

  17. Shin, H.K., Cho, S.H., Jeon, H.S., Lee, Y.H., Song, J.C., Jang, S.H., Lee, C.H., Kwon, Y.H.: Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients. Neuroscience Letters 442, 174–179 (2008)

    Article  Google Scholar 

  18. Sheffler, L., Chae, J.: Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 24, 305–323 (2013)

    Article  Google Scholar 

  19. Cauraugh, J.H., Kim, S.: Two Coupled Motor Recovery Protocols Are Better Than One: Electromyogram-Triggered Neuromuscular Stimulation and Bilateral Movements. Stroke 33, 1589–1594 (2002)

    Article  Google Scholar 

  20. Stewart, K.C., Cauraugh, J.H., Summers, J.J.: Bilateral movement training and stroke rehabilitation: A systematic review and meta-analysis. Journal of the Neurological Sciences 244, 89–95 (2006)

    Article  Google Scholar 

  21. Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.Z., Fu, M.J., Chae, J.: Contralaterally Controlled Functional Electrical Stimulation for Stroke Rehabilitation. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 314–317 (August 2012)

    Google Scholar 

  22. Surface electromyography for the non-invasive assessment of muscles project. web page, http://seniam.org/

  23. Huang, Y.H., Englehart, K., Hudgins, B.S., Chan, A.D.C.: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses. IEEE Trans. Biomed. Eng. 52(11), 1801–1811 (2005)

    Article  Google Scholar 

  24. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Systems with Applications 39, 7420–7431 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Felipe Ruiz-Olaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruiz-Olaya, A.F., López-Delis, A., Cerquera, A. (2015). Toward an Upper-Limb Neurorehabilitation Platform Based on FES-Assisted Bilateral Movement: Decoding User’s Intentionality. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics