Skip to main content

Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Abstract

Artificial Metaplasticity are Artificial Learning Algorithms based on modelling higher level properties of biological plasticity: the plasticity of plasticity itself, so called Biological Metaplasticity. Artificial Metaplasticity aims to obtain general improvements in Machine Learning based on the experts generally accepted hypothesis that the Metaplasticity of neurons in Biological Brains is of high relevance in Biological Learning. Artificial Metaplasticity Multilayer Perceptron (AMMLP) is the application of Metaplasticity in MLPs ANNs trying to improve uniform plasticity of the Backpropagation algorithm. In this paper two different AMMLP algorithms are applied to the MIT-BIH electro cardiograms database and results are compared in terms of network performance and error evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benchaib, Y., Marcano-CedeƱo, A., Torres-Alegre, S., Andina, D.: Application of Artificial Metaplasticity Neural Networks to Cardiac Arrhythmias Classification. In: FerrĆ”ndez Vicente, J.M., Ɓlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part I. LNCS, vol.Ā 7930, pp. 181ā€“190. Springer, Heidelberg (2013)

    ChapterĀ  Google ScholarĀ 

  2. Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intelligent Automation and Soft Computing; Special Issue in Signal Processing and Soft ComputingĀ 15(4), 681ā€“694 (2009)

    Google ScholarĀ 

  3. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology MagazineĀ 20(3), 45ā€“50 (2001)

    ArticleĀ  Google ScholarĀ 

  4. Ropero-Pelaez, J., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing (2012), http://dx.doi.org/10.1016/j.neucom.2012.08.042

  5. Abraham, W.C.: Activity-dependent regulation of synaptic plasticity (metaplasticity) in the hippocampus. In: The Hippocampus: Functions and Clinical Relevance, pp. 15ā€“26. Elsevier Science, Amsterdam (1996)

    Google ScholarĀ 

  6. Kinto, E.A., Del Moral Hernandez, E., Marcano, A., Ropero PelĆ”ez, F.J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Ɓlvarez, J.R. (eds.) IWINAC 2007. LNCS, vol.Ā 4528, pp. 628ā€“636. Springer, Heidelberg (2007)

    ChapterĀ  Google ScholarĀ 

  7. Marcano-CedeƱo, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. NeurocomputingĀ 74(8), 1243ā€“1250 (2011)

    ArticleĀ  Google ScholarĀ 

  8. Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal ProcessingĀ 39(9), 2101ā€“2104 (1991)

    ArticleĀ  Google ScholarĀ 

  9. Hu, Y.H., Palreddy, S., Tompkins, W.J.: A patient- adaptable ECG beat classifier using a mixture of experts approach. IEEE Transactions on Biomedical EngineeringĀ 44(9), 891ā€“900 (1997)

    ArticleĀ  Google ScholarĀ 

  10. Minami, K., Nakajima, H., Toyoshima, T.: Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Transactions on Biomedical EngineeringĀ 46(2), 179ā€“185 (1999)

    ArticleĀ  Google ScholarĀ 

  11. Owis, M.I., Youssef, A.B.M., Kadah, Y.M.: Characterization of ECG signals based on blind source separation. Medical and Biological Engineering and ComputingĀ 40(5), 557ā€“564 (2002)

    ArticleĀ  Google ScholarĀ 

  12. Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Systems with ApplicationsĀ 34(4), 2841ā€“2846 (2008)

    ArticleĀ  Google ScholarĀ 

  13. Benchaib, Y., Chikh, M.: A Specialized learning for neural classification of cardiac arrhythmias. Journal of Theoretical and Applied Information TechnologyĀ 6(1), 81ā€“89 (2009)

    Google ScholarĀ 

  14. Gothwal, H., Kedawat, S., Kumar, R.: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network. Journal of Biomedical Science and EngineeringĀ 4, 289ā€“296 (2011)

    ArticleĀ  Google ScholarĀ 

  15. Ghorbanian, P., Jalali, A., Ghaffari, A., Nataraj, C.: An improved procedure for detection of heart arrhythmias with novel pre-processing techniques. Expert systemsĀ 29(5), 478ā€“491 (2009)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Torres-Alegre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Torres-Alegre, S., Fombellida, J., PiƱuela-Izquierdo, J.A., Andina, D. (2015). Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database. In: FerrĆ”ndez Vicente, J., Ɓlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics