Abstract
Artificial Metaplasticity are Artificial Learning Algorithms based on modelling higher level properties of biological plasticity: the plasticity of plasticity itself, so called Biological Metaplasticity. Artificial Metaplasticity aims to obtain general improvements in Machine Learning based on the experts generally accepted hypothesis that the Metaplasticity of neurons in Biological Brains is of high relevance in Biological Learning. Artificial Metaplasticity Multilayer Perceptron (AMMLP) is the application of Metaplasticity in MLPs ANNs trying to improve uniform plasticity of the Backpropagation algorithm. In this paper two different AMMLP algorithms are applied to the MIT-BIH electro cardiograms database and results are compared in terms of network performance and error evolution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benchaib, Y., Marcano-CedeƱo, A., Torres-Alegre, S., Andina, D.: Application of Artificial Metaplasticity Neural Networks to Cardiac Arrhythmias Classification. In: FerrĆ”ndez Vicente, J.M., Ćlvarez SĆ”nchez, J.R., de la Paz LĆ³pez, F., Toledo Moreo, F. J. (eds.) IWINAC 2013, Part I. LNCS, vol.Ā 7930, pp. 181ā190. Springer, Heidelberg (2013)
Andina, D., Alvarez-Vellisco, A., Jevtic, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intelligent Automation and Soft Computing; Special Issue in Signal Processing and Soft ComputingĀ 15(4), 681ā694 (2009)
Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology MagazineĀ 20(3), 45ā50 (2001)
Ropero-Pelaez, J., Andina, D.: Do biological synapses perform probabilistic computations? Neurocomputing (2012), http://dx.doi.org/10.1016/j.neucom.2012.08.042
Abraham, W.C.: Activity-dependent regulation of synaptic plasticity (metaplasticity) in the hippocampus. In: The Hippocampus: Functions and Clinical Relevance, pp. 15ā26. Elsevier Science, Amsterdam (1996)
Kinto, E.A., Del Moral Hernandez, E., Marcano, A., Ropero PelĆ”ez, F.J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Ćlvarez, J.R. (eds.) IWINAC 2007. LNCS, vol.Ā 4528, pp. 628ā636. Springer, Heidelberg (2007)
Marcano-CedeƱo, A., Quintanilla-Dominguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. NeurocomputingĀ 74(8), 1243ā1250 (2011)
Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal ProcessingĀ 39(9), 2101ā2104 (1991)
Hu, Y.H., Palreddy, S., Tompkins, W.J.: A patient- adaptable ECG beat classifier using a mixture of experts approach. IEEE Transactions on Biomedical EngineeringĀ 44(9), 891ā900 (1997)
Minami, K., Nakajima, H., Toyoshima, T.: Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network. IEEE Transactions on Biomedical EngineeringĀ 46(2), 179ā185 (1999)
Owis, M.I., Youssef, A.B.M., Kadah, Y.M.: Characterization of ECG signals based on blind source separation. Medical and Biological Engineering and ComputingĀ 40(5), 557ā564 (2002)
Yu, S.N., Chou, K.T.: Integration of independent component analysis and neural networks for ECG beat classification. Expert Systems with ApplicationsĀ 34(4), 2841ā2846 (2008)
Benchaib, Y., Chikh, M.: A Specialized learning for neural classification of cardiac arrhythmias. Journal of Theoretical and Applied Information TechnologyĀ 6(1), 81ā89 (2009)
Gothwal, H., Kedawat, S., Kumar, R.: Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network. Journal of Biomedical Science and EngineeringĀ 4, 289ā296 (2011)
Ghorbanian, P., Jalali, A., Ghaffari, A., Nataraj, C.: An improved procedure for detection of heart arrhythmias with novel pre-processing techniques. Expert systemsĀ 29(5), 478ā491 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Torres-Alegre, S., Fombellida, J., PiƱuela-Izquierdo, J.A., Andina, D. (2015). Artificial Metaplasticity: Application to MIT-BIH Arrhythmias Database. In: FerrĆ”ndez Vicente, J., Ćlvarez-SĆ”nchez, J., de la Paz LĆ³pez, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-18914-7_14
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18913-0
Online ISBN: 978-3-319-18914-7
eBook Packages: Computer ScienceComputer Science (R0)