Skip to main content

Global and Local Features for Char Image Classification

  • Conference paper
Artificial Computation in Biology and Medicine (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9107))

Abstract

The use of image analysis in understanding how powdered coal burns during the combustion plays a significant role in setting combustion parameters. During the pulverised coal combustion, char particles are produced by devolatising coal and represent the dominant stage in the combustion process. The pyrolysis produces different char morphologies that determine coal reactivity affecting the performance of coal combustion in power plants and the emissions of carbon dioxide, CO2. In this paper, an automatic char classification model is proposed using supervised learning. A general classification model is trained given a set of char particles classified by an expert. In particular, Support Vector Machine (SVM) and Random Forest are the trained classifiers. Two types of features are evaluated to built classification models: local and global. Local features are calculated using the Scale-Invariant Transform Feature (SIFT). Global features are defined based on the morphology classification by the International Committee for Coal and Organic Petrology (ICCP). Each classifier is trained by SVM or Random Forest and evaluated using a 10-fold cross-validation. The 70% of data is used as training set and the rest as testing set. A total of 2928 char-particle images are used for evaluating performance of classification models. Additionally, evaluation of model generalisation capability is done using a test set of 732 char particle images. Results showed that global features – defined by the application domain – increase significantly the accuracy of classifiers. Also, global features have more generalisation power than local features. Local features lack of meaning in the application domain and classifiers build with local features – such as SIFT – depend crucially on the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, D., Lester, E.: Atlas of char occurrences. combustion working group, commission iii. In: Internacional Conference on Coal Petrology, ICCP (2001)

    Google Scholar 

  2. Alvarez, D., Borrego, A.G., Menéndez, R.: Unbiased methods for the morphological description of char structures. Fuel 76(13), 1241–1248 (1997)

    Article  Google Scholar 

  3. Avila, S., Thome, N., Cord, M., Valle, E., de Araujo, A.: Bossa: Extended bow formalism for image classification. In: 18th IEEE International Conference on Image Processing, ICIP (2011)

    Google Scholar 

  4. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, COLT 1992 (1992)

    Google Scholar 

  5. Chaves, D., García, E., Trujillo, M., Barraza, J.M.: Char morphology from coal blends using images analysis. In: World Conference on Carbon, CARBON (2013)

    Google Scholar 

  6. Cloke, M., Lester, E.: Characterization of coals for combustion using petrographic analysis: A review. Fuel 73(3), 315–320 (1994)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision 7(2), 81–227 (2011)

    Article  MATH  Google Scholar 

  9. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)

    Google Scholar 

  10. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  11. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR (2005)

    Google Scholar 

  12. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, ICCV 1999 (1999)

    Google Scholar 

  13. Rojas, A.F., Burgos, J.M.B.: Caracterización morfológica del carbonizado de carbones pulverizados: estado del arte. Revista Facultad de Ingeniería Universidad de Antioquia (41), 84–97 (2007)

    Google Scholar 

  14. Rojas, A.F., Burgos, J.M.B.: Caracterización morfológica del carbonizado de carbones pulverizados: determinación experimental. Revista Facultad de Ingeniería Universidad de Antioquia (43), 42–58 (2008)

    Google Scholar 

  15. Tang, F., Lu, H., Sun, T., Jiang, X.: Efficient image classification using sparse coding and random forest. In: 5th International Congress on Image and Signal Processing, CISP (2012)

    Google Scholar 

  16. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)

    Google Scholar 

  17. Wu, T., Lester, E., Cloke, M.: Advanced automated char image analysis techniques. Energy & Fuels 20(3), 1211–1219 (2006)

    Article  Google Scholar 

  18. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)

    Google Scholar 

  19. Yang, P., Yang, Y.H., Zhou, B.B., Zomaya, A.Y.: A review of ensemble methods in bioinformatics. Current Bioinformatics 5(4), 296–308 (2010)

    Article  Google Scholar 

  20. Zack, G.W., Rogers, W.E., Latt, S.A.: Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25(7), 741–753 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deisy Chaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chaves, D., Trujillo, M., Barraza, J. (2015). Global and Local Features for Char Image Classification. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Artificial Computation in Biology and Medicine. IWINAC 2015. Lecture Notes in Computer Science(), vol 9107. Springer, Cham. https://doi.org/10.1007/978-3-319-18914-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18914-7_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18913-0

  • Online ISBN: 978-3-319-18914-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics