Advertisement

Approximate Packing: Integer Programming Models, Valid Inequalities and Nesting

  • Igor LitvinchevEmail author
  • Luis Infante
  • Lucero Ozuna
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 105)

Abstract

Using a regular grid to approximate a container, packing objects is reduced to assigning objects to the nodes of the grid subject to non-overlapping constraints. The packing problem is then stated as a large scale linear 0-1 optimization problem. Different formulations for non-overlapping constraints are presented and compared. Valid inequalities are proposed to strengthening formulations. This approach is applied for packing circular and L-shaped objects. Circular object is considered in a general sense as a set of points that are all the same distance (not necessary Euclidean) from a given point. Different shapes, such as ellipses, rhombuses, rectangles, octagons, etc., are treated similarly by simply changing the definition of the norm used to define the distance. Nesting objects inside one another is also considered. Numerical results are presented to demonstrate the efficiency of the proposed approach.

Keywords

Packing problems Integer programming Large-scale optimization 

Notes

Acknowledgements

This work was partially supported by Grants from RFBR, Russia (12 01 00893 a), and CONACYT, Mexico (167019).

References

  1. 1.
    Baltacioglu, E., Moore, J.T., Hill, R.R.: The distributor’s three-dimensional pallet-packing problem: a human-based heuristical approach. Int. J. Oper. Res. 1, 249–266 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    Castillo, I., Kampas, F.J., Pinter, J.D.: Solving circle packing problems by global optimization: numerical results and industrial applications. Eur. J. Oper. Res. 191, 786–802 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fasano, G.: Solving Non-standard Packing Problems by Global Optimization and Heuristics. Springer-Verlag, Berlin (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    Frazer, H.J., George, J.A.: Integrated container loading software for pulp and paper industry. Eur. J. Oper. Res. 77, 466–474 (1994)CrossRefGoogle Scholar
  5. 5.
    Stevenson, D., Searchfield, G., Xu, X.: Spatial design of hearing aids incorporating multiple vents. Trends Hear. 18 (2014). doi: 10.1177/2331216514529189
  6. 6.
    Wang, J.: Packing of unequal spheres and automated radiosurgical treatment planning. J. Comb. Optim. 3, 453–463 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and methodologies. Adv. Oper. Res. (2009). doi: 10.1155/2009/150624 Google Scholar
  8. 8.
    Lopez, C.O., Beasley, J.E.: A heuristic for the circle packing problem with a variety of containers. Eur. J. Oper. Res. 214, 512–525 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lopez, C.O., Beasley, J.E.: Packing unequal circles using formulation space search. Comput. Oper. Res. 40, 1276–1288 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pinter, J.D., Kampas, F.J.: Nonlinear optimization in Mathematica with MathOptimizer Professional. Math. Educ. Res. 10, 1–18 (2005)Google Scholar
  11. 11.
    Akeb, H., Hifi, M.: Solving the circular open dimension problem using separate beams and look-ahead strategies. Comput. Oper. Res. 40, 1243–1255 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Birgin, E.G., Gentil, J.M.: New and improved results for packing identical unitary radius circles within triangles, rectangles and strips. Comput. Oper. Res. 37, 1318–1327 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Stoyan, Y.G., Yaskov, G.N.: Packing congruent spheres into a multi-connected polyhedral domain. Int. Trans. Oper. Res. 20, 79–99 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bennel, J.A., Olivera, J.F.: A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 60, 93–105 (2009)CrossRefGoogle Scholar
  15. 15.
    Toledo, F.M.B., Carravilla, M.A., Ribero, C., Oliveira, J.F., Gomes, A.M.: The dotted-board model: a new MIP model for nesting irregular shapes. Int. J. Prod. Econ. 145, 478–487 (2013)CrossRefGoogle Scholar
  16. 16.
    Galiev, S.I., Lisafina, M.S.: Linear models for the approximate solution of the problem of packing equal circles into a given domain. Eur. J. Oper. Res. 230, 505–514 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Litvinchev, I., Ozuna, L.: Packing circles in a rectangular container. Paper presented at the 1st international congress on logistics and supply chain, Mexican Institute of Transportation, Queretaro, Mexico, 24–25 October 2013Google Scholar
  18. 18.
    Litvinchev, I., Ozuna, L.: Integer programming formulations for approximate packing circles in a rectangular container. Math. Probl. Eng. (2014). Article ID 317697, doi: 10.1155/2014/317697
  19. 19.
    Litvinchev, I., Ozuna, L.: Approximate packing circles in a rectangular container: valid inequalities and nesting. J. Appl. Res. Technol. 12, 716–723 (2014)CrossRefGoogle Scholar
  20. 20.
    Litvinchev, I., Infante, L., Ozuna, L.: Approximate circle packing in a rectangular container: integer programming formulations and valid inequalities. Lect. Notes Comput. Sci. 8760, 47–61 (2014)CrossRefGoogle Scholar
  21. 21.
    Beasley, J.E.: An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 33, 49–64 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems, Revised Reprint. SIAM (2012)Google Scholar
  23. 23.
    Wolsey, L.A.: Integer Programming. Wiley, New York (1999)Google Scholar
  24. 24.
    ILOG CPLEX, Mathematical programming optimizers. Version 12.6 (2013)Google Scholar
  25. 25.
    Bortfeldt, A., Wäscher, G.: Constraints in container loading—a state-of-the-art review. Eur. J. Oper. Res. 229, 1–20 (2013)CrossRefGoogle Scholar
  26. 26.
    Wang, W., Wang, H., Dai, G., Wang, H.: Visualization of large hierarchical data by circle packing. CHI ’06 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, April 22–27, Montreal, Canada, pp. 517–520 (2006)Google Scholar
  27. 27.
    George, J.A.: Multiple container packing: a case study of pipe packing. J. Oper. Res. Soc. 47, 1098–1109 (1996)CrossRefzbMATHGoogle Scholar
  28. 28.
    Pedroso, J.P., Cunha, S., Tavares, J.N.: Recursive circle packing problems. Int. Trans. Oper. Res. (2014). doi: 10.1111/itor.12107 zbMATHGoogle Scholar
  29. 29.
    Litvinchev, I., Infante, L., Ozuna, L.: LP-based heuristic for packing circular-like objects in a rectangular container. Math. Probl. Eng. (to appear)Google Scholar
  30. 30.
    Litvinchev, I., Tsurkov, V.: Aggregation in Large Scale Optimization. Kluwer, Boston (2003)CrossRefzbMATHGoogle Scholar
  31. 31.
    Burke, E.K., Hellier, R.S., Kendall, G., Whitwell, G.: Irregular packing using the line and arc no-fit polygon. Oper. Res. 58, 948–970 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Litvinchev, I., Infante, L., Ozuna, L.: Packing circular-like objects in a rectangular container. J. Comput. Syst. Sci. Int. 54, 259--267 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Complex Systems Department, Computing CenterRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Mechanical and Electrical EngineeringNuevo Leon Sate UniversityMonterreyMexico

Personalised recommendations