Graph Coloring Models and Metaheuristics for Packing Applications

  • Nicolas ZuffereyEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 105)


On the one hand, in the famous graph coloring problem, each vertex of the considered graph has to get a single color. If two vertices are connected with an edge, then their colors have to be different. The goal consists in coloring the graph with the smallest number of colors. On the other hand, consider the packing problem where items have to be loaded in a container. For each item, we have to decide in which container it will be assigned. As some pairs of items are incompatible, they cannot be loaded in the same container. The goal is to load all the items in a minimum number of containers. Even if the correspondence between these two problems is obvious (a vertex is an item, a color is a container, and an edge represents an incompatibility), there is no obvious bridge between the packing and the graph coloring literatures. In this chapter, some packing problems will be modeled and solved with graph coloring models and methods.


Graph coloring Packing with incompatibilities Metaheuristics 


  1. 1.
    Aarts, E.H.I., Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial optimization problems. Philips J. Res. 40, 193–226 (1985)MathSciNetGoogle Scholar
  2. 2.
    Bloechliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35, 960–975 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)CrossRefGoogle Scholar
  4. 4.
    Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29(5), 641–662 (2003)CrossRefGoogle Scholar
  5. 5.
    Calegari, P., Coray, C., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization. J. Heuristics 5, 145–158 (1999)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dorigo, M., Stuetzle, T.: The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Springer US (2003)Google Scholar
  7. 7.
    Faigle, U., Kern, W.: Some convergence results for probabilistic tabu search. ORSA J. Comput. 4, 32–37 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the graph coloring problem. Discret. Appl. Math. 156, 267–279 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Garey, M., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)Google Scholar
  11. 11.
    Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9(4), 497–511 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Berlin (2010)Google Scholar
  13. 13.
    Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006)CrossRefGoogle Scholar
  14. 14.
    Glover, F.: Future paths for integer programming and linkage to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Glover, F., Hanafi, S.: Tabu search and finite convergence. Discret. Appl. Math. 119(1–2), 3–36 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann, Los Altos (1987)Google Scholar
  17. 17.
    Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hertz, A., Zufferey, N.: Vertex coloring using ant colonies. In: Artificial Ants. Iste & Wiley, London (2010)Google Scholar
  20. 20.
    Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156, 2551–2560 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lu, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203, 241–250 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Meuwly, F.-X., Ries, B., Zufferey, N.: Solution methods for a scheduling problem with incompatibility and precedence constraints. Algorithmic Oper. Res. 5(2), 75–85 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Moura, A., Oliveira, J.F.: A GRASP approach to the container-loading problem. Intell. Syst. 20(4), 50–57 (2005)CrossRefGoogle Scholar
  28. 28.
    Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141(2), 382–392 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colouring. J. Oper. Res. Soc. 61, 819–826 (2010)CrossRefzbMATHGoogle Scholar
  31. 31.
    Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: a unified view of metaheuristics. Eur. J. Oper. Res. 135, 1–16 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)CrossRefGoogle Scholar
  33. 33.
    Zhang, D., Peng, Y., Leung, S.C.H.: A heuristic block-loading algorithm based on multi-layer search for the container loading problem. Comput. Oper. Res. 39(10), 2267–2276 (2012)CrossRefGoogle Scholar
  34. 34.
    Zufferey, N.: Metaheuristics: some principles for an efficient design. Comput. Technol. Appl. 3(6), 446–462 (2012)Google Scholar
  35. 35.
    Zufferey, N.: Models and methods in graph coloration for various production problems. In: Metaheuristics for Production Scheduling. Hermès – Lavoisier, Paris (2013)CrossRefGoogle Scholar
  36. 36.
    Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Sched. 11(4), 263–277 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zufferey, N., Labarthe, O., Schindl, D.: Heuristics for a project management problem with incompatibility and assignment costs. Comput. Optim. Appl. 51, 1231–1252 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Geneva School of Economics and Management (GSEM)University of GenevaGenevaSwitzerland

Personalised recommendations