# Graph Coloring Models and Metaheuristics for Packing Applications

• Nicolas Zufferey
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 105)

## Abstract

On the one hand, in the famous graph coloring problem, each vertex of the considered graph has to get a single color. If two vertices are connected with an edge, then their colors have to be different. The goal consists in coloring the graph with the smallest number of colors. On the other hand, consider the packing problem where items have to be loaded in a container. For each item, we have to decide in which container it will be assigned. As some pairs of items are incompatible, they cannot be loaded in the same container. The goal is to load all the items in a minimum number of containers. Even if the correspondence between these two problems is obvious (a vertex is an item, a color is a container, and an edge represents an incompatibility), there is no obvious bridge between the packing and the graph coloring literatures. In this chapter, some packing problems will be modeled and solved with graph coloring models and methods.

## Keywords

Graph coloring Packing with incompatibilities Metaheuristics

## References

1. 1.
Aarts, E.H.I., Laarhoven, P.J.M.: Statistical cooling: a general approach to combinatorial optimization problems. Philips J. Res. 40, 193–226 (1985)
2. 2.
Bloechliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35, 960–975 (2008)
3. 3.
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)
4. 4.
Bortfeldt, A., Gehring, H., Mack, D.: A parallel tabu search algorithm for solving the container loading problem. Parallel Comput. 29(5), 641–662 (2003)
5. 5.
Calegari, P., Coray, C., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolutionary algorithms in combinatorial optimization. J. Heuristics 5, 145–158 (1999)
6. 6.
Dorigo, M., Stuetzle, T.: The ant colony optimization metaheuristic: algorithms, applications, and advances. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 251–285. Springer US (2003)Google Scholar
7. 7.
Faigle, U., Kern, W.: Some convergence results for probabilistic tabu search. ORSA J. Comput. 4, 32–37 (1992)
8. 8.
Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J. Comb. Optim. 3(4), 379–397 (1999)
9. 9.
Galinier, P., Hertz, A., Zufferey, N.: An adaptive memory algorithm for the graph coloring problem. Discret. Appl. Math. 156, 267–279 (2008)
10. 10.
Garey, M., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)Google Scholar
11. 11.
Gehring, H., Bortfeldt, A.: A parallel genetic algorithm for solving the container loading problem. Int. Trans. Oper. Res. 9(4), 497–511 (2002)
12. 12.
Gendreau, M., Potvin, J.-Y.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146. Springer, Berlin (2010)Google Scholar
13. 13.
Gendreau, M., Iori, M., Laporte, G., Martello, S.: A tabu search algorithm for a routing and container loading problem. Transp. Sci. 40(3), 342–350 (2006)
14. 14.
Glover, F.: Future paths for integer programming and linkage to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)
15. 15.
Glover, F., Hanafi, S.: Tabu search and finite convergence. Discret. Appl. Math. 119(1–2), 3–36 (2002)
16. 16.
Grefenstette, J.J.: Incorporating problem specific knowledge into genetic algorithms. In: Genetic Algorithms and Simulated Annealing, pp. 42–60. Morgan Kaufmann, Los Altos (1987)Google Scholar
17. 17.
Hajek, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)
18. 18.
Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)
19. 19.
Hertz, A., Zufferey, N.: Vertex coloring using ant colonies. In: Artificial Ants. Iste & Wiley, London (2010)Google Scholar
20. 20.
Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring. Discret. Appl. Math. 156, 2551–2560 (2008)
21. 21.
Lu, Z., Hao, J.-K.: A memetic algorithm for graph coloring. Eur. J. Oper. Res. 203, 241–250 (2010)
22. 22.
Mack, D., Bortfeldt, A., Gehring, H.: A parallel hybrid local search algorithm for the container loading problem. Int. Trans. Oper. Res. 11(5), 511–533 (2004)
23. 23.
Malaguti, E., Toth, P.: A survey on vertex coloring problems. Int. Trans. Oper. Res. 17(1), 1–34 (2010)
24. 24.
Malaguti, E., Monaci, M., Toth, P.: A metaheuristic approach for the vertex coloring problem. INFORMS J. Comput. 20(2), 302–316 (2008)
25. 25.
Meuwly, F.-X., Ries, B., Zufferey, N.: Solution methods for a scheduling problem with incompatibility and precedence constraints. Algorithmic Oper. Res. 5(2), 75–85 (2010)
26. 26.
Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
27. 27.
Moura, A., Oliveira, J.F.: A GRASP approach to the container-loading problem. Intell. Syst. 20(4), 50–57 (2005)
28. 28.
Osman, I.H., Laporte, G.: Metaheuristics: a bibliography. Ann. Oper. Res. 63, 513–623 (1996)
29. 29.
Pisinger, D.: Heuristics for the container loading problem. Eur. J. Oper. Res. 141(2), 382–392 (2002)
30. 30.
Plumettaz, M., Schindl, D., Zufferey, N.: Ant local search and its efficient adaptation to graph colouring. J. Oper. Res. Soc. 61, 819–826 (2010)
31. 31.
Taillard, E.D., Gambardella, L.M., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: a unified view of metaheuristics. Eur. J. Oper. Res. 135, 1–16 (2001)
32. 32.
Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
33. 33.
Zhang, D., Peng, Y., Leung, S.C.H.: A heuristic block-loading algorithm based on multi-layer search for the container loading problem. Comput. Oper. Res. 39(10), 2267–2276 (2012)
34. 34.
Zufferey, N.: Metaheuristics: some principles for an efficient design. Comput. Technol. Appl. 3(6), 446–462 (2012)Google Scholar
35. 35.
Zufferey, N.: Models and methods in graph coloration for various production problems. In: Metaheuristics for Production Scheduling. Hermès – Lavoisier, Paris (2013)
36. 36.
Zufferey, N., Amstutz, P., Giaccari, P.: Graph colouring approaches for a satellite range scheduling problem. J. Sched. 11(4), 263–277 (2008)
37. 37.
Zufferey, N., Labarthe, O., Schindl, D.: Heuristics for a project management problem with incompatibility and assignment costs. Comput. Optim. Appl. 51, 1231–1252 (2012)