Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

  • 557 Accesses

Abstract

In optimal control problems, we choose the ‘best’ controls from the set of all admissible controls. In our case, the set of admissible controls consists of the set of all controls that steer the system to the desired terminal state at the given terminal time. In general, these exact controls are not uniquely determined. Therefore we can choose from the set of admissible controls an exact control that is optimal in the sense that it minimizes an objective function that models our preferences. This leads to an optimal control problem where the prescribed end conditions can be regarded as equality constraints. Often, the control costs that are given by the norm of the control function are an interesting objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic, Amsterdam (2003)

    Google Scholar 

  2. Avdonin, S.A., Ivanov, S.A.: Families of Exponentials. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Bennighof, J.K., Boucher, R.L.: Exact minimum-time control of a distributed system using a traveling wave formulation. J. Optim. Theory Appl. 73, 149–167 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Birkhäuser, Basel (2007)

    Book  Google Scholar 

  5. Birkhoff, G., Rota, G.-C.: On the completeness of Sturm-Liouville expansions. Am. Math. Mon. 67, 835–841 (1960)

    Article  MathSciNet  Google Scholar 

  6. Bona, J., Winther, R.: The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14, 1056–1106 (1983)

    Article  MathSciNet  Google Scholar 

  7. Butkovski, A., Egorov, A.I., Lurie, K.A.: Optimal control of distributed systems (A survey of soviet publications). SIAM J. Control 6, 437–476 (1968)

    Article  MathSciNet  Google Scholar 

  8. Butzer, P.-L., Berens, H.: Semi-Groups of Operators and Approximation. Springer, Berlin (1967)

    Book  Google Scholar 

  9. Cerpa, E.: Control of a Korteweg–de Vries equation: a tutorial. Math. Control Relat. Fields 4, 45–99 (2014)

    Article  MathSciNet  Google Scholar 

  10. Coron, J.-M.: Control and Nonlinearity. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  11. Coron, J.-M., Crepeau, E.: Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6, 367–398 (2004)

    Article  MathSciNet  Google Scholar 

  12. Coron, J.-M., Lü, Q.: Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102, 1080–1120 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cox, S., Zuazua, E.L.: The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44(2), 545–573 (1995)

    Article  MathSciNet  Google Scholar 

  14. Datko, R., You, Y.C.: Some second-order vibrating systems cannot tolerate small time delays in their damping. J. Optim. Theory Appl. 20, 521–537 (1991)

    Article  MathSciNet  Google Scholar 

  15. Datko, R., Lagnese, J., Polis, M.P.: An example of the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24, 152–156 (1986)

    Article  MathSciNet  Google Scholar 

  16. Dick, M., Gugat, M., Herty, M., Leugering, G., Steffensen, S., Wang, K.: Stabilization of networked hyperbolic systems with boundary feedback. In: Leugering, G., et al. (eds.) Trends in PDE Constrained Optimization, pp. 487–504. Birkhäuser, Basel (2014)

    Google Scholar 

  17. Dieudonné, J.: Geschichte der Mathematik 1700–1900 – ein Abriss. Vieweg, Braunschweig/Wiesbaden (1985)

    Google Scholar 

  18. Gugat, M.: Analytic solutions of L optimal control problems for the wave equation. J. Optim. Theory Appl. 114, 397–421 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gugat, M.: Optimal boundary control of a string to rest in finite time with continuous state. ZAMM 86, 134–150 (2006)

    Article  MathSciNet  Google Scholar 

  20. Gugat, M.: Optimal energy control in finite time by varying the length of the string. SIAM J. Control Optim. 46, 1705–1725 (2007)

    Article  MathSciNet  Google Scholar 

  21. Gugat, M.: Optimal boundary feedback stabilization of a string with moving boundary. IMA J. Math. Control Inf. 25, 111–121 (2008)

    Article  MathSciNet  Google Scholar 

  22. Gugat, M.: Penalty techniques for state constrained optimal control problems with the wave equation. SIAM J. Control Optim. 48, 3026–3051 (2009)

    Article  MathSciNet  Google Scholar 

  23. Gugat, M.: Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inf. 27(2), 189–203 (2010)

    Article  MathSciNet  Google Scholar 

  24. Gugat, M.: Stabilizing a vibrating string by time delay. In: 15th International Conference on Methods and Models in Automation and Robotics, MMAR 2010, pp. 144–147, 23–26 Aug 2010. IEEE, Miedzyzdroje (2010)

    Google Scholar 

  25. Gugat, M.: Boundary feedback stabilization of the telegraph equation: decay rates for vanishing damping term. Syst. Control Lett. 66, 72–84 (2014)

    Article  MathSciNet  Google Scholar 

  26. Gugat, M.: Norm-minimal Neumann boundary control of the wave equation. Arab. J. Math. 4, 41–58 (2015) (Open Access)

    Google Scholar 

  27. Gugat, M., Herty, M.: Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM: Control Optim. Calc. Var. 17, 28–51 (2011)

    Article  MathSciNet  Google Scholar 

  28. Gugat, M., Herty, M.: The sensitivity of optimal states to time delay. PAMM 14, 775–776 (2014)

    Article  Google Scholar 

  29. Gugat, M., Leugering, G.: L -norm minimal control of the wave equation: on the weakness of the bang–bang principle. ESAIM: Control Optim. Calc. Var. 14, 254–283 (2008)

    Article  MathSciNet  Google Scholar 

  30. Gugat, M., Tucsnak, M.: An example for the switching delay feedback stabilization of an infinite dimensional system: the boundary stabilization of a string. Syst. Control Lett. 60, 226–233 (2011)

    Article  MathSciNet  Google Scholar 

  31. Gugat, M., Leugering, G., Schittkowski, K., Schmidt, E.J.P.G.: Modelling, stabilization and control of flow in networks of open channels. In: Grötschel, M., et al. (eds.) Online Optimization of Large Scale Systems, pp. 251–270. Springer, Berlin (2001)

    Chapter  Google Scholar 

  32. Gugat, M., Herty, M., Klar, A., Leugering, G.: Optimal control for traffic flow networks. J. Optim. Theory Appl. 126, 589–616 (2005)

    Article  MathSciNet  Google Scholar 

  33. Gugat, M., Leugering, G., Sklyar, G.: L p-optimal boundary control for the wave equation. SIAM J. Control Optim. 44, 49–74 (2005)

    Article  MathSciNet  Google Scholar 

  34. Guo, B.Z., Xu, C.Z.: Boundary output feedback stabilization of a one-dimensional wave equation system with time delay, In: Proceedings of 17th IFAC World Congress, pp. 8755–8760 (2008)

    Google Scholar 

  35. Guo, B.Z., Yang, K.Y.: Danamic stabilization of an Euler- Bernoulli beam equation with time delay in boundary observation. Automatica 45, 1468–1475 (2009)

    Article  MathSciNet  Google Scholar 

  36. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Paris (1997)

    Google Scholar 

  37. Knobel, R.: An Introduction to the Mathematical Theory of Waves. American Mathematical Society/Institute for Advanced Study, Providence, RI (2000)

    Google Scholar 

  38. Komornik, V.: Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29, 197–208 (1991)

    Article  MathSciNet  Google Scholar 

  39. Krabs, W.: Optimal control of processes governed by partial differential equations part ii: vibrations. Z. Oper. Res. 26, 63–86 (1982)

    MathSciNet  Google Scholar 

  40. Krabs, W.: On Moment Theory and Controllability of One–Dimensional Vibrating Systems and Heating Processes. Lecture Notes in Control and Information Science, vol. 173. Springer, Heidelberg (1992)

    Google Scholar 

  41. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Volume 2, Abstract Hyperbolic-like Systems over a Finite Time Horizon. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  42. Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Providence, RI (2009)

    Book  Google Scholar 

  43. Li, T.: Controllability and Observability for Quasilinear Hyperbolic Systems. AIMS, Springfield (2010)

    Google Scholar 

  44. Lions, J.L.: Exact controllability, stabilization and perturbations of distributed systems. SIAM Rev. 30, 1–68 (1988)

    Article  MathSciNet  Google Scholar 

  45. Logemann, H., Rebarber, R., Weiss, G.: Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop. SIAM J. Control Optim. 34, 572–600 (1996)

    Article  MathSciNet  Google Scholar 

  46. Pedersen, G.K. Analysis Now. Springer, New York (1989)

    Book  Google Scholar 

  47. Rosier, L.: Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: Control Optim. Calc. Var. 2, 33–55 (1997)

    Article  MathSciNet  Google Scholar 

  48. Rosier, L., Zhang, B.-Yu.: Control and stabilization of the Korteweg-de Vries equation: recent progresses. J. Syst. Sci. Complexity 22, 647–682 (2009)

    Article  MathSciNet  Google Scholar 

  49. Russell, D.L.: Nonharmonic Fourier series in the control theory of distributed parameter systems. J. Math. Anal. Appl. 18, 542–560 (1967)

    Article  MathSciNet  Google Scholar 

  50. Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1998)

    Google Scholar 

  51. Singh, T., Alli, H.: Exact time-optimal control of the wave equation. J. Guid. Control Dyn. 19, 130–134 (1996)

    Article  Google Scholar 

  52. Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg Verlag, Wiesbaden (2005)

    Book  Google Scholar 

  53. Toda, M.: Nonlinear Waves and Solitons. Kluwer, Dordrecht (1989)

    Google Scholar 

  54. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhäuser Advanced Texts, Basel (2009)

    Book  Google Scholar 

  55. Wang, J.-M., Guo, B.-Z., Krstic, M.: Wave equation stabilization by delays equal to even multiples of the wave propagation time. SIAM J. Control Optim. 49, 517–554 (2011)

    Article  MathSciNet  Google Scholar 

  56. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1976)

    Google Scholar 

  57. Work, D.B., Blandin, S., Tossavainen, O.-P., Piccoli, B., Bayen, A.M.: A traffic model for velocity data assimilation. Appl. Math. Res. Express 1, 1–35 (2010)

    MathSciNet  Google Scholar 

  58. Yosida, K.: Functional Analysis. Springer, Berlin/Germany (1965)

    Book  Google Scholar 

  59. Zuazua, E.: Control and stabilization of waves on 1-d networks. In: Piccoli, B., Rascle, M. (eds.) Modelling and Optimisation of Flows on Networks, Cetraro, Italy 2009. Lecture Notes in Mathematics, vol. 2062, pp. 463–493 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Martin Gugat

About this chapter

Cite this chapter

Gugat, M. (2015). Optimal Exact Control. In: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems. SpringerBriefs in Electrical and Computer Engineering(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18890-4_4

Download citation

Publish with us

Policies and ethics