Skip to main content

Molecules with Biological Interest Adsorbed on Carbon Nanostructures

  • Chapter
  • First Online:
Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications

Part of the book series: Carbon Nanostructures ((CARBON))

  • 1474 Accesses

Abstract

In the last decade, carbon nanostructures have been exhaustively studied mainly associated with their application in biosensors and drug delivery systems. In this context, the present chapter introduces several studies combining amino acids and pharmaceutical drugs with carbon nanostructures such as graphene, carbon nanotubes and fullerene. More specifically, the biomolecules under focus are the amino acid cysteine and the pharmaceutical drugs nimesulide, meloxicam and zidovudine. These molecules can be considered models for different chemical interactions or adsorptions with carbon nanostructures. The adsorptions analysed suggest possible applications such as biosensors or drug delivery depending on the use of particular pristine or functionalised carbon nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

0D:

Zero dimensional

1D:

One dimensional

2D:

Two dimensional

AIDS:

Acquired immune deficiency syndrome

AZT:

Zidovudine or azidothydamine

BSSE:

Basis set superposition error

CN:

Carbon nanomaterials

CNT:

Carbon nanotubes

COX:

Cyclooxygenase

DFT:

Density functional theory

DNA:

Deoxyribonucleic acid

DOX:

Doxorubicin

NSAID:

Nonsteroidal anti-inflammatory drugs

SIESTA:

Spanish initiative for the electronic simulations of thousands of atoms

SWCNT:

Single-walled carbon nanotubes

References

  1. Kim KS, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  2. Singh V, Joung D, Zhai LS, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    Article  Google Scholar 

  3. Liu WT, Bien MY, Chuang KJ et al (2014) Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media. J Hazard Mater 280:216–225

    Article  Google Scholar 

  4. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  Google Scholar 

  5. Li W, Wu P, Zhang H, Cai C (2012) Signal amplification of graphene oxide combining with restriction endonuclease for site-specific determination of DNA methylation and assay of methyltransferase activity. Anal Chem 84:7583–7590

    Article  Google Scholar 

  6. Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Article  Google Scholar 

  7. Terrones M, Botelllo-Méndez AR, Campos-Delgado J (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5:351–372

    Article  Google Scholar 

  8. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  Google Scholar 

  9. Partha R, Conyers JL (2009) Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed 4:261–275

    Article  Google Scholar 

  10. Fei S, Chen J, Yao S, Deng G, He D, Kuang Y (2005) Electrochemical behavior of L-cysteine and its detection at carbon nanotube electrode modified with platinum. Anal Biochem 339:29–35

    Article  Google Scholar 

  11. Yang X, Wang Y, Huang X et al (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21:3448–3454

    Article  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  13. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  14. Feng L, Chen Y, Ren J, Qu XA (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32:2930–2937

    Article  Google Scholar 

  15. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. theranostics 2:283–294

    Google Scholar 

  16. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  Google Scholar 

  17. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  18. Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci USA 102:11600–11605

    Article  Google Scholar 

  19. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functionalized nanotubes as nanometezised probes in chemistry and biology. Nature 394:52–55

    Article  Google Scholar 

  20. Li X, Peng Y, Qu X (2006) Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res 34:3670–3676

    Article  Google Scholar 

  21. Li X, Peng Y, Ren J, Qu X (2006) Carboxyl-modified single-walled carbon nanotubes selectively induce human telomerici-motif formation. Proc Natl Acad Sci USA 103:19658

    Article  Google Scholar 

  22. Kroto HW (1987) The stability of the fullerenes C-24, C-28, C-32, C-36, C-50, C-60 And C-70. Nature 329:529–531

    Article  Google Scholar 

  23. Jensen AW, Wilson SR, Schuster DI (1996) Biological applications of fullerenes. Bioorg Med Chem 4:767–779

    Article  Google Scholar 

  24. Soler JM, Artacho E, Gale JD et al (2002) The SIESTA method for ab-initio order-N materials simulation. J Phys: Condens Matter 14:2745–2779

    Google Scholar 

  25. de Menezes VM, Michelon E, Rossato J, Zanella I, Fagan SB (2012) Carbon nanostructures interacting with vitamins A, B3 and C: Ab initio simulations. J Biomed Nanotechnol 8:1–5

    Article  Google Scholar 

  26. Moore S, Stein WH, Fruton JS (1946) Chemical reactions of mustard gas and related compounds. The reaction of mustard gas with carboxyl groups and with the amino groups of amino acids and peptides. J Org Chem 11:675–680

    Article  Google Scholar 

  27. Wu W, Jiang W, Zhang W, Lin D, Yang K (2013) Influence of functional groups on desorption of organic compounds from carbon nanotubes into water: insight into desorption hysteresis. Environ Sci Technol 47:8373–8382

    Google Scholar 

  28. Guo Y, Lu X, Weng J, Leng Y (2013) Density functional theory study of the interaction of arginine-glycine-aspartic acid with graphene, defective graphene, and graphene oxide. J Phys Chem C 117:5708–5717

    Article  Google Scholar 

  29. Xu F, Yang D, Gao Y, Li H (2014) Electrochemical sensing platform for L-CySH based on nearly uniform Au nanoparticles decorated graphene nanosheets. Mater Sci Eng, C 38:292–298

    Article  Google Scholar 

  30. Lee DW, Santos LDL, Seo JW et al (2010) Quantum confinement-induced tunable exciton states in graphene oxide. J Phys Chem B 114:5723–5728

    Article  Google Scholar 

  31. Gao L, Lian C, Zhou Y et al (2014) Graphene oxide-DNA based sensors. Biosens Bioelectron 60:22–29

    Article  Google Scholar 

  32. Carneiro MA, Venezuela P, Fagan SB (2008) First principles calculations of alanine radicals adsorbed on pristine and functionalized carbon nanotubes. J Phys Chem C 112:14812–14815

    Article  Google Scholar 

  33. Ganji MD (2009) Density functional theory based treatment of amino acids adsorption on single-walled carbon nanotubes. Diamond Relat Mater 18:662–668

    Article  Google Scholar 

  34. Ganji MD (2010) Calculations of encapsulation of amino acids inside the (13,0) single-walled carbon nanotube. Fullerenes, Nanotubes, Carbon Nanostruct 18:24–36

    Article  Google Scholar 

  35. Ritchie SMC, Kissick KE, Bachas LG, Sikdar SK, Parikh C, Bhattacharyya D (2001) Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture. Environ Sci Technol 35:3252–3538

    Article  Google Scholar 

  36. Zhang Z, Jia H, Ma F, Han P, Liu X, Xu B (2011) First principle study of cysteine molecule on intrinsic and Au-doped graphene surface as a chemosensor device. J Mol Model 17:649–655

    Article  Google Scholar 

  37. Ma F, Zhang Z, Jia H, Liu X, Hao Y, Xu B (2010) Adsorption of cysteine molecule on intrinsic and Pt-doped graphene: a first-principle study. J Mol Struct THEOCHEM 955:134–139

    Article  Google Scholar 

  38. Boys SF, Bernardi F (1976) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  Google Scholar 

  39. Borges M, Marini Filho R, Laposy CB et al (2013) Nonsteroidal anti-inflammatory therapy. Changes on renal function of healthy dogs. Acta Cir Bras 28:842–847

    Article  Google Scholar 

  40. Barrier CH, Hirschowitz BI (1989) Current controversies in rheumatology. Controversies and management of non-steroidal anti-inflammatory drug induced side effects on upper gastrointestinal tract. Arthritis Rheum 32:926–929

    Google Scholar 

  41. Bjarnason I, Williams P, Smethrust P et al (1993) Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 104:1832–1847

    Google Scholar 

  42. Engelhardt G, Bögel R, Schnitzler C, Utzmann R (1996) Meloxican: influence on arachidonic acid metabolism: part II. In vivo findings. Biochem Pharmacol 51:29–38

    Article  Google Scholar 

  43. Davis N, Brogden RN (1994) Nimesulide: an update of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy. Drugs 48:431–454

    Article  Google Scholar 

  44. Vavia PR, Adhage NA (1999) Inclusion complexation of nimesulide with beta-cyclodextrins. Drug Dev Ind Pharm 25(4):543–545

    Article  Google Scholar 

  45. Zanella I, Fagan SB, Mota R, Fazzio A (2007) Ab initio study of pristine and Si-doped capped carbon nanotubes interacting with nimesulide molecules. Chem Phys Lett 439:348–353

    Article  Google Scholar 

  46. Engelhardt G, Bögel R, Schnitzer C, Utzmann R (1996) Meloxican: influence on arachidonic acid metabolism. Part 2. In vivo findings. Biochem Pharmacol 51:29–38

    Article  Google Scholar 

  47. Noble S, Balfour JA (1996) Meloxicam. Drugs 51(3):424–430

    Article  Google Scholar 

  48. Karateev AE (2014) Meloxicam: the golden mean of nonsteroidal anti-inflammatory drugs. Ter Arkh 86:99–115

    Google Scholar 

  49. Ramana LN, Anand AR, Sethuraman S, Krishnan UM (2014) Targeting strategies for delivery of anti-HIV drugs. J Controlled Release 192:271–283

    Article  Google Scholar 

  50. Vendrame L, Zanella I, Michelon E, Fagan SB, Mota R (2013) First principles simulations of zidovudine (AZT) molecules interacting with carbon nanostructures. J Comput Theor Nanosci 10:313–317

    Article  Google Scholar 

  51. Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  Google Scholar 

  52. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  Google Scholar 

  53. Tian B, Wang C, Zhang S, Feng L, Liu Z (2011) Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. AcsNano 5:7000–7009

    Google Scholar 

  54. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    Article  Google Scholar 

  55. Depan D, Shah J, Misra RDK (2011) Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater Sci Eng, C 31:1305–1312

    Article  Google Scholar 

  56. Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene rust. Biomaterials 32:8555–8561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange Binotto Fagan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tonel, M.Z., de Menezes, V.M., Zanella, I., Fagan, S.B. (2015). Molecules with Biological Interest Adsorbed on Carbon Nanostructures. In: Bergmann, C., Machado, F. (eds) Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-18875-1_6

Download citation

Publish with us

Policies and ethics