Skip to main content

On the Influence of Illumination Quality in 2D Facial Recognition

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

Detecting automatically whether a facial image is greatly affected or not by the illumination conditions, allows us in some cases to discard those deteriorated images for further recognition tasks or, in other cases, to apply a preprocessing method only to the images that really need it. With this aim, our paper presents a study on the isolated influence of illumination quality of 2D images in facial recognition. First, a fuzzy inference system is designed to be as an objective and automatic method to evaluate the illumination quality of facial patterns. Then, we estimate the best recognition result for the same images using different image classification methods. By combining both the illumination quality with the corresponding recognition results for same face images, and computing the regression line of this set of patterns, we detect a nearly-linear regression trend between illumination quality and recognition rate for the images tested. This result can then be used as a quality measure of patterns in 2D facial recognition, and also for deciding whether it is worth or not using these facial images in recognition tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abaza, A., Harrison, M.A., Bourlai, T., Ross, A.: Design and evaluation of photometric image quality measures for effective face recognition. IET Biometrics 3, 314–324 (2014)

    Article  Google Scholar 

  2. Abate, A.F., Nappi, M., Riccio, D., Sabatino, G.: 2D and 3D face recognition: A survey. Pattern Recognition Letters 28, 1885–1906 (2007)

    Article  Google Scholar 

  3. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 721–732 (1997)

    Article  Google Scholar 

  4. Georghiades, A., Belhumeur, P.N., Kriegman, D.: From Few to Many: Illumination Cone Models for Face Recognition under Variable lighting and Pose. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 643–660 (2001)

    Article  Google Scholar 

  5. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2008)

    Google Scholar 

  6. Gross, R., Baker, S., Matthews, I., Kanade, T.: Face Recognition across Pose and Illumination. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, pp. 193–216. Springer (2004)

    Google Scholar 

  7. Koenen, R.: MPEG-4 Overview, International Organisation for Standarisation, ISO/IEC JTC1/SC29/WG11 No. 4668 (2002), http://www.oipf.tv/docs/mpegif/overview.pdf

  8. Leekwijck, W.V., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets and Systems 108, 159–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Park, Y.K., Min, B.C., Kim, J.K.: A New Method of Illumination Normalization for Robust Face Recognition. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 38–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Phillips, P.J., et al.: Overview of the face recognition grand challenge. In: Hebert, M., Kriegman, D. (eds.) Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), pp. 947–954 (2005)

    Google Scholar 

  11. Rizo-Rodrıguez, D., Mendez-Vazquez, H., Garcıa-Reyes, E.: An Illumination Quality Measure for Face Recognition. In: Ercil, A. (ed.) Proc. 20th International Conference on Pattern Recognition (ICPR 2010), pp. 1477–1480. IEEE Press (2010)

    Google Scholar 

  12. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: An evaluation of recent full reference image quality assessment algorithms. IEEE Trans. on Image Processing 15, 3440–3451 (2006)

    Article  Google Scholar 

  13. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Publishing Company (1985)

    Google Scholar 

  14. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Processing 13, 600–612 (2004)

    Article  Google Scholar 

  15. Zhang, J., Xie, X.: A study on the effective approach to illumination-invariant face recognition based on a single image. In: Zheng, W.-S., Sun, Z., Wang, Y., Chen, X., Yuen, P.C., Lai, J. (eds.) CCBR 2012. LNCS, vol. 7701, pp. 33–41. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Zou, X., Kittler, J., Messer, K.: Illumination Invariant Face Recognition: A Survey. In: Bowyer, K.W. (ed.) Proc. First IEEE Intl. Conf. on Biometrics: Theory, Applications, and Systems (BTAS 2007), pp. 1–8 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sánchez, Á., Vélez, J.F., Moreno, A.B. (2015). On the Influence of Illumination Quality in 2D Facial Recognition. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics