Abstract
Optimization algorithms deployed on unstable computational environments must be resilient to the volatility of computing nodes. Different fault-tolerance mechanisms have been proposed for this purpose. We focus on the use of dynamic population sizes in the context of island-based multimemetic algorithms, namely memetic algorithms which explicitly represent and evolve memes alongside solutions. These strategies require the eventual creation of new solutions in order to enlarge island populations, aiming to compensate the loss of information taking place when neighboring computing nodes go down. We study the influence that the mechanism used to create these new individuals has on the performance of the algorithm. To be precise, we consider the use of probabilistic models of the current population which are subsequently sampled in order to produce diverse solutions without distorting the convergence of the population and the progress of the search. We perform an extensive empirical assessment of those strategies on three different problems, considering a simulated computational environment featuring diverse degrees of instability. It is shown that these self-sampling strategies provide a performance improvement with respect to random reinitialization, and that a model using bivariate probabilistic dependencies is more effective in scenarios with large volatility.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information Processing Letters 82, 7–13 (2002)
Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience (2005)
Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of Modern Physics 74(1), 47–97 (2002)
Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann (1997)
Bonet, J.S.D., Isbell Jr., C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. The MIT Press (1996)
Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D. (ed.) Second Workshop on Foundations of Genetic Algorithms, pp. 93–108. Morgan Kaufmann, Vail (1993)
Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic algorithms. In: Parallel Problem Solving from Nature – PPSN II, pp. 37–48. Elsevier, Brussels (1992)
Hidalgo, J.I., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island model fault tolerant? In: Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2007, pp. 2737–2744. ACM, New York (2007)
Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)
Jiménez Laredo, J.L., Bouvry, P., Lombraña González, D., Fernández de Vega, F., García Arenas, M., Merelo Guervós, J.J., Fernandes, C.M.: Designing robust volunteer-based evolutionary algorithms. Genetic Programming and Evolvable Machines 15(3), 221–244 (2014)
Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)
Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through weibull analysis of dwell time. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 379–386. ACM, New York (2010)
Milojičić, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-peer computing. Tech. Rep. HPL-2002-57, Hewlett-Packard Labs (2002)
Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)
Neri, F., Cotta, C., Moscato, P.: Handbook of Memetic Algorithms. SCI, vol. 379. Springer, Heidelberg (2013)
Nogueras, R., Cotta, C.: Studying fault-tolerance in island-based evolutionary and multimemetic algorithms. Journal of Grid Computing (2015), doi:10.1007/s10723-014-9315-6
Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic algorithms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 731–740. Springer, Heidelberg (2014)
Nogueras, R., Cotta, C.: On meme self-adaptation in spatially-structured multimemetic algorithms. In: Dimov, I., Fidanova, S., Lirkov, I. (eds.) NMA 2014. LNCS, vol. 8962, pp. 70–77. Springer, Heidelberg (2015)
Nogueras, R., Cotta, C.: Self-balancing multimemetic algorithms in dynamic scale-free networks. In: Mora, A.M., Squillero, G. (eds.) EvoApplications 2015. LNCS, vol. 9028, pp. 177–188. Springer, Heidelberg (2015)
Ong, Y.S., Lim, M.H., Chen, X.: Memetic computation-past, present and future. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)
Quade, D.: Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association 74, 680–683 (1979)
Sarmenta, L.F.: Bayanihan: Web-based volunteer computing using java. In: Masunaga, Y., Tsukamoto, M. (eds.) WWCA 1998. LNCS, vol. 1368, pp. 444–461. Springer, Heidelberg (1998)
Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisation. In: Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics. SCI, vol. 136, pp. 31–57. Springer, Heidelberg (2008)
Tanese, R.: Distributed genetic algorithms. In: 3rd International Conference on Genetic Algorithms, pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco (1989)
Watson, R.A., Hornby, G.S., Pollack, J.B.: Modeling building-block interdependency. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 97–106. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Nogueras, R., Cotta, C. (2015). Self-sampling Strategies for Multimemetic Algorithms in Unstable Computational Environments. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-18833-1_8
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-18832-4
Online ISBN: 978-3-319-18833-1
eBook Packages: Computer ScienceComputer Science (R0)