Skip to main content

Evolution of Synaptic Delay Based Neural Controllers for Implementing Central Pattern Generators in Hexapod Robotic Structures

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

We used synaptic delay based neural networks for implementing Central Pattern Generators (CPGs) for locomotion behaviors in hexapod robotic structures. These networks incorporate synaptic delays in their connections which allow greater time reasoning capabilities in the neural controllers, and additionally we incorporated the concept of the center-crossing condition in such networks to facilitate obtaining oscillation patterns for the robotic control. We compared the results against continuous time recurrent neural networks, one of the neural models most used as CPG, when proprioceptive information is used to provide fault tolerance for the required behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beer, R.: On the dynamics of small continuous time recurrent neural networks. Adaptive Behaviour 3(4), 469–509 (1995)

    Article  MathSciNet  Google Scholar 

  2. Campo, A., Santos, J.: Evolution of adaptive center-crossing continuous time recurrent neural networks for biped robot control. In: Proceedings European Symposium on Artificial Neural Networks (ESANN 2010), pp. 535–540 (2010)

    Google Scholar 

  3. Duro, R.J., Santos, J.: Discrete time backpropagation for training synaptic delay based artificial neural networks. IEEE Transactions on Neural Networks 10(4), 779–789 (1999)

    Article  Google Scholar 

  4. Duro, R.J., Santos, J.: Modeling temporal series through synaptic delay based neural networks. Neural Computing and Applications 11, 224–237 (2003)

    Article  MATH  Google Scholar 

  5. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, NY (2006)

    Google Scholar 

  6. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  7. Hexapod videos: http://www.dc.fi.udc.es/ai/~santos/Iwinac2015/Iwinac2015.html

  8. Mathayomchan, B., Beer, R.: Center-crossing recurrent neural networks for the evolution of rhythmic behavior. Neural Computation 14, 2043–2051 (2002)

    Article  MATH  Google Scholar 

  9. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Comp. Series. Springer (2005)

    Google Scholar 

  10. Reil, T., Husbands, P.: Evolution of central pattern generators for bipedal walking in a real-time physics environment. IEEE Transactions on Evolutionary Computation 6(2), 159–168 (2002)

    Article  Google Scholar 

  11. Santos, J.: Evolved center-crossing recurrent synaptic delay based neural networks for biped locomotion control. In: Proceedings IEEE Congress on Evolutionary Computation (IEEE-CEC 2013), pp. 142–148 (2013)

    Google Scholar 

  12. Santos, J., Campo, A.: Biped locomotion control with evolved adaptive center-crossing continuous time recurrent neural networks. Neurocomputing 86, 86–96 (2012)

    Article  Google Scholar 

  13. Santos, J., Duro, R.J.: Influence of noise on discrete time backpropagation trained networks. Neurocomputing 41(1-4), 67–89 (2001)

    Article  MATH  Google Scholar 

  14. Smith, R.: Open Dynamics Engine (2003), http://opende.sourceforge.net

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Santos, J., Fernández, P. (2015). Evolution of Synaptic Delay Based Neural Controllers for Implementing Central Pattern Generators in Hexapod Robotic Structures. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics