Skip to main content

From Smart Grids to Business Intelligence, a Challenge for Bioinspired Systems

  • Conference paper
Bioinspired Computation in Artificial Systems (IWINAC 2015)

Abstract

Interconnected networks for delivering electricity are in the need of powerful Information Technology Systems to successfully process information about the behaviours of suppliers and consumers. They are becoming Smart Grids, increasingly complex infrastructures that require the automated intelligent management of multi-tier services and utility’s business, improving the efficiency, reliability, economics, and sustainability of the production and distribution from suppliers to consumers. This paper makes a review of the State-of-the-art of this technological challenge, where Big Data from Smart Grids empowers Business Intelligence. Bioinspired computing that models adaptive, reactive, and distributed intelligent processing is candidate to play an important role in tackling this complex problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, D.: Applied Predictive Analytics: Principles and Techniques for the Professional Data Analyst. John Wiley & Sons (2014)

    Google Scholar 

  2. Ancillotti, E., Bruno, R., Conti, M.: The role of communication systems in smart grids: Architectures, technical solutions and research challenges. Computer Communications 36(17-18), 1665–1697 (2013)

    Article  Google Scholar 

  3. Ardito, L., Procaccianti, G., Menga, G., Morisio, M.: Smart grid technologies in europe: An overview. IEEE Power and Energy Magazine 10(4), 22–34 (2014)

    Google Scholar 

  4. Arends, M., Hendriks, P.H.: Smart grids, smart network companies. Utilities Policy 28, 1–11 (2014)

    Article  Google Scholar 

  5. Bhatt, J., Shah, V., Jani, O.: An instrumentation engineer’s review on smart grid: Critical applications and parameters. Renewable and Sustainable Energy Reviews 40, 1217–1239 (2014)

    Article  Google Scholar 

  6. Bonabeau, E., Meyer, C.: Swarm intelligence: A whole new way to think about business. Harvard Business Review 79(5), 106–115 (2001)

    Google Scholar 

  7. Booth, A., Demirdoven, N., Tai, H.: The smart grid opportunity for solutions providers. McKinsey on Smart Grid (2010)

    Google Scholar 

  8. Cardenas, J.A., Gemoets, L., Rosas, J.H.A., Sarfi, R.: A literature survey on smart grid distribution: an analytical approach. Journal of Cleaner Production 65, 202–216 (2014)

    Article  Google Scholar 

  9. Chang, Y.-W., Hsu, P.-Y., Wu, Z.-Y.: Exploring managers’ intention to use business intelligence: the role of motivations. Behaviour & Information Technology, no. ahead-of-print, 1–13 (2014)

    Google Scholar 

  10. Choy, K.L., Lee, W., Lo, V.: Design of an intelligent supplier relationship management system: a hybrid case based neural network approach. Expert Systems with Applications 24(2), 225–237 (2003)

    Article  Google Scholar 

  11. Connections, E.V.: Getting in synch: Here comes 3d: The next generation of interoperability. Elster Vital Connections Special Report (2014)

    Google Scholar 

  12. Davenport, T.H., Patil, D.: Data scientist, the sexiest job of the 21st century. Harvard Business Review 90, 70–76 (2012)

    Google Scholar 

  13. Dhar, V.: Data science and prediction. Communications of the ACM 56(12), 64–73 (2013)

    Article  Google Scholar 

  14. Dhar, V., Jarke, M., Laartz, J.: Big data. Communications of the ACM 56(12), 64–73 (2013)

    Article  Google Scholar 

  15. Fisher, D., Drucker, S., Czerwinski, M.: Business intelligence analytics. IEEE Computer Graphics and Applications 34(5), 22–24 (2014)

    Article  Google Scholar 

  16. Glaser, J., Stone, J.: Effective use of business intelligence. Healthc. Financ. Manage. 62(2), 68–72 (2008)

    Google Scholar 

  17. Groznik, A.: Potentials and challenges in multi utility management (2010)

    Google Scholar 

  18. Groznik, A.: Towards multi utility management in europe 2(8), 195 (2014)

    Google Scholar 

  19. Gungor, V., Bin, L., Hancke, G.: Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics 57(10), 3557–3564 (2010)

    Article  Google Scholar 

  20. Karnouskos, S., Terzidis, O., Karnouskos, P.: An advanced metering infrastructure for future energy networks. In: New Technologies, Mobility and Security, pp. 597–606. Springer (2007)

    Google Scholar 

  21. Kezunovic, M., Vittal, V., Meliopoulos, S., Mount, T.: The big picture: Smart research for large-scale integrated smart grid solutions. IEEE Power and Energy Magazine 10(4), 22–34 (2014)

    Article  Google Scholar 

  22. López, G., Moreno, J., Amarís, H., Salazar, F.: Paving the road toward smart grids through large-scale advanced metering infrastructures. In: Electric Power Systems Research, vol. 120, pp. 194–205 (2015); smart Grids: World’s Actual Implementations

    Google Scholar 

  23. Luthra, S., Kumar, S., Kharb, R., Ansari, M.F., Shimmi, S.: Adoption of smart grid technologies: An analysis of interactions among barriers. Renewable and Sustainable Energy Reviews 33, 554–565 (2014)

    Article  Google Scholar 

  24. Ma, Z.S.: Towards computational models of animal cognition, an introduction for computer scientists. Cognitive Systems Research 33, 42–69 (2015)

    Article  Google Scholar 

  25. Ma, Z.S.: Towards computational models of animal communications, an introduction for computer scientists. Cognitive Systems Research 33, 70–99 (2015)

    Article  Google Scholar 

  26. Martín-Rubio, I., Florence-Sandoval, A., González-Sánchez, E.: Agency and learning relationships against energy-efficiency barriers. In: The Handbook of Environmental Chemistry, pp. 1–34. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/698_2014_305

    Google Scholar 

  27. Olexová, C.: Business intelligence adoption: a case study in the retail chain. World Scientific and Engineering Academy and Soceity Transactions on Business and Economics 11, 95–106 (2014)

    Google Scholar 

  28. Personal, E., Guerrero, J.I., Garcia, A., Pea, M., Leon, C.: Key performance indicators: A useful tool to assess smart grid goals. Energy 76, 976–988 (2014)

    Article  Google Scholar 

  29. Popovič, A., Hackney, R., Coelho, P.S., Jaklič, J.: Towards business intelligence systems success: Effects of maturity and culture on analytical decision making. Decision Support Systems 54(1), 729–739 (2012)

    Article  Google Scholar 

  30. Popovič, A., Hackney, R., Coelho, P.S., Jaklič, J.: How information-sharing values influence the use of information systems: An investigation in the business intelligence systems context. The Journal of Strategic Information Systems 23(4), 270–283 (2014)

    Article  Google Scholar 

  31. Salem, A.-A.: Electricity agents in smart grid markets. Computers in Industry 64(3), 235–241 (2013)

    Article  Google Scholar 

  32. Sapp, C.E., Mazzuchi, T., Sarkani, S.: Rationalising business intelligence systems and explicit knowledge objects: Improving evidence-based management in government programs. Journal of Information & Knowledge Management 13(02) (2014)

    Google Scholar 

  33. Starace, F.: The utility industry in 2020. In: Handbook Utility Management, pp. 147–167. Springer (2009)

    Google Scholar 

  34. Tarallo, M.: Analytics for everyone. Security Management, November 2014 Print Issue. ASIS Intl. (2014)

    Google Scholar 

  35. Wissner, M.: The smart grid a saucerful of secrets? Applied Energy 88(7), 2509–2518 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Martín-Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martín-Rubio, I., Florence-Sandoval, A.E., Jiménez-Trillo, J., Andina, D. (2015). From Smart Grids to Business Intelligence, a Challenge for Bioinspired Systems. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics